2014 SOL Quiz B Questions 1-20

__1. Look at the graphed function below.

Based on the zeros, which best represents the graphed function?

A. (x-2)(x+3)B. (x+2)(x-3)C. (x-4)(2x-6)D. (2x-1)(x-2)

2. Cecil has \$100 and he goes and buys 4 cokes at c dollars each. Which expression represents the total amount of money, in dollars, that Cecil has left after buying these 4 cokes?

A. 100 + 4c B. 4c - 100

C.
$$100 - 4c$$
 D. $100(4c)$

____3. Which expression is equivalent to $\frac{20c^4d^6}{15c^3d^7}$?

A.
$$\frac{4c^7 d^{13}}{3}$$
 B. $\frac{20c^2 d}{15c}$ C. $\frac{4cd}{3}$ D. $\frac{4c}{3d}$

- 12. When n > 0, which expression is equivalent to $\sqrt{12a^3n^4}$ in simplest form? A. $2an\sqrt{3an}$ B. $2an^2\sqrt{3a}$ C. $4an\sqrt{n}$ D. $2an^3\sqrt{3n}$
- ____13. Look at the system of equations.

$$\begin{cases} y = -x + 2\\ 3x + 3y = 6 \end{cases}$$

What is the value of *x* for the solution to this system of equations?

A. 3 B. -4 C. 8 D. -10

____14. What value of p will make this equation true?

$$\frac{p-2}{3} = \frac{p+2}{4}$$
A. 12 B. -12 C. 14 D. -14

_____15. What is the value of this expression when n = -4? -2|n+6|A. -20 B. 20 C. 4 D. -4

____16. What is the slope of the line represented by $\frac{1}{5}x - 2y = 10$

A.
$$-\frac{1}{10}$$
 B. $-\frac{1}{2}$ C. $\frac{1}{10}$ D. -10

19.	Which inequality represents all the solutions of			2(2x-3) < 2(x+1)?
	A. x < -2	B. x > -2	C. x < 4	D. $x > 4$

20. A total of 100 adults and children are at a movie theater. There are 6 more children than adults in the theater. If *a* represents the number of adults and *b* represents the number of children, which system of equations could be used to find the number of adults and the number of children in the theater?

A.
$$\begin{cases} a+b=100 \\ a=6b \end{cases}$$

B.
$$\begin{cases} a+b=100 \\ a=b+6 \end{cases}$$

C.
$$\begin{cases} a+b=100 \\ b=a+6 \end{cases}$$

D.
$$\begin{cases} a+b=100 \\ a=\frac{b}{6} \end{cases}$$