5-3 Slope between two points

Name \qquad
Look at the graphs below and calculate the slope between the two points. Don't forget about positive and negative slopes.

1. \qquad

2. \qquad

3. \qquad

Remember that Slope $=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x} \quad$ If the slope can be simplified, simplify it.
4. $(4,5)$ and $(6,15) \quad$ Slope $=$
5. $(1,5)$ and $(3,7) \quad$ Slope $=$ \qquad
6. $(2,1)$ and $(3,10)$ Slope $=$ \qquad 7. $(2,5)$ and $(3,1) \quad$ Slope $=$ \qquad
8. $(4,3)$ and $(6,9) \quad$ Slope $=$ \qquad 9. $(0,5)$ and $(6,6) \quad$ Slope $=$ \qquad
10. $(-2,5)$ and $(2,-3) \quad$ Slope $=$ \qquad 11. $(-2,5)$ and $(-6,1) \quad$ Slope $=$ \qquad
12. $(1,2)$ and $(-1,12) \quad$ Slope $=$ \qquad 13. $(8,5)$ and $(6,25)$ Slope $=$ \qquad
14. $(4,5)$ and $(5,1) \quad$ Slope $=$ \qquad 15. $(4,-6)$ and $(8,6) \quad$ Slope $=$ \qquad
16. If the slope between two points is 4 and one of the points is $(2,6)$, what could another possible point be?
17. If the slope between two points is -2 and one of the points is $(2,6)$, what could another possible point be?

