7-4 Intercepts and Discriminants

Name:		Time> Start:	Finish: Total Time =			
In 1-5, find the x-intercepts and the y-intercepts of the given equations.						
1.	$f(x)=x^2+8x-9$	x-intercept =	y-intercept =			
2.	f(x)=3x-9	x-intercept =	y-intercept =			
3.	$f(x)=x^2+6x+5$	x-intercept =	y-intercept =			
4.	$f(x) = 4x^2 - 7x - 2$	x-intercept =	y-intercept =			
5.	$f(x) = x^3 + 2x^2 - x - 2$	x-intercept =	y-intercept =			

Discriminants Section

Use the discriminant of each equation to determine how many solutions exist.

1.	$3x^2 - x - 8 = 0$ Number of solutions =	2.	$2x^2 - 4x + 2 = 0$ Number of solutions =
3.	$x^2 - 3x - 10 = 0$ Number of solutions =	4.	$4x^2 + x + 10 = 0$ Number of solutions =

5. Consider the equation $x^2 - 6x + 13 = 0$. No real number solutions exist. Thus, the equation $f(x) = x^2 - 6x + 13$ does not cross the x-axis – important concept. Determine the y-intercept and then calculate the derivative to find the vertex of the parabola. Now determine a third point on the parabola without plugging values into the equation.

y-intercept = _____ vertex = _____ 3rd point = _____

6. Consider the equation $x^2 + 2x + 2 = 0$. No real number solutions exist. Thus, the equation $f(x) = x^2 + 2x + 2$ does not cross the x-axis – important concept. Determine the y-intercept and then calculate the derivative to find the vertex of the parabola. Now determine a third point on the parabola without plugging values into the equation.

y-intercept = _____ vertex = _____ 3rd point = _____

SAT Questions

_____7. If
$$\frac{x}{2} = y$$
 and $2y = y$, what is the value of x?

8.

The average (arithmetic mean) of x and y is m, where $m \neq 0$. What is the average of (arithmetic mean) of x, y, and 2m? A. m B. $\frac{4}{2}m$ C. $\frac{3}{2}m$ D. $\frac{5}{2}m$ E.

A.
$$m$$
 B. $\frac{1}{3}m$ C. $\frac{3}{2}m$ D. $\frac{3}{3}m$ E. $2m$

If $5x^2 - 15x = 0$ and $x \neq 0$, find the value of *x*.

10.

- If $n = 5^{2000} + 5^{2002}$, then what are the prime factors of *n*?
- A. 5 only
- B. 2 and 5 only
- C. 2, 5, and 10 only
- D. 2, 5, and 13 only
- E. 2, 5, 1000, and 1001 only