Honors Geometry Chapter 8 Extra Practice

Round Answers to the nearest tenth.

Name \qquad
\qquad 1. If the $\cos \theta=\frac{1}{2}$, what is θ ?
2. Simplify $5 \sqrt{3} \bullet 2 \sqrt{2}$ NO CALCULATOR!
3. Simplify $\sqrt{6615}$
\qquad 4. Solve for $\mathrm{x}: ~ 44=\sqrt{4 x}$
\qquad 5. Simplify all the way: $\quad 5 \sqrt{3} \bullet 2 \sqrt{8} \quad$ NO CALCULATOR!
\qquad 6. When placing a ladder against a building, you are supposed to have the ladder form a 75° angle with the ground. If I have a 24 foot ladder, how far away from the building must I put the ladder to form such an angle?
\qquad 7. Consider a right triangle that has lengths of 9, 40, and 41.

What is the closest angle measurement between the legs that are 9 and 41?
\qquad 8. When taking off, a typical airplane gets to about 160 mph before lifting off the ground. The plane gets to this speed and then takes off at a 10° angle with the ground. I see the plane directly above my house a few minutes later and it is exactly 2 miles above the ground. To the nearest foot, how far is my house from the exact spot the plane took off? There are 5,280 feet in a mile.
9. Simplify all the way: $\frac{12}{\sqrt{6}}$
10. Solve for θ. Round your answer to the nearest whole number.

$$
39=30+3 \tan \theta
$$

Graph 1

Graph 2

1. As a radical (e.g. $2 \sqrt{15}$), what is the length of the line in graph 1 ?
2. As a radical (e.g. $2 \sqrt{15}$), what is the length of the line in graph 2 ?
3. Give a counterexample to the statement: For every integer n, n^{3} is positive.
(In other words, give me a value for n that shows this statement is not true.)
4. Given $\triangle A B C$ with $\mathrm{AB}=13$ and $\mathrm{AC}=18$, which could be possible lengths of BC ?
$\begin{array}{lllllllll}44 & 38 & 6 & 4 & 22 & 31 & 34 & 13 & 5\end{array}$

5. What point would make the two triangles congruent?
A. $(1,-1)$
B. $(-2,2)$
C. $(-5,4)$
D. $(-2,1)$
