I started doing this problem almost 30 years ago with my students, but I now see that it is a common problem. So much for my originality.

Let each letter in the alphabet be given a value with the first letter being worth 1 and the next letter being worth 2 , all the way to the last letter of the alphabet being worth 26. Find 4 real words whose letters add up to 100.
For example, the words printer, thirty, and excellent are all words that add up to 100 . Obviously you can't use those as your choices.

I have given you the values below to save you time from listing them all out.

A=1	$\mathbf{N}=\mathbf{1 4}$
$\mathbf{B}=\mathbf{2}$	$\mathbf{O}=\mathbf{1 5}$
$\mathbf{C}=\mathbf{3}$	$\mathbf{P}=\mathbf{1 6}$
$\mathbf{D}=\mathbf{4}$	$\mathbf{Q}=\mathbf{1 7}$
$\mathbf{E}=\mathbf{5}$	$\mathbf{R}=\mathbf{1 8}$
$\mathbf{F}=\mathbf{6}$	$\mathbf{S}=\mathbf{1 9}$
$\mathbf{G}=\mathbf{7}$	$\mathbf{T}=\mathbf{2 0}$
$\mathbf{H}=\mathbf{8}$	$\mathbf{U}=\mathbf{2 1}$
$\mathbf{I}=\mathbf{9}$	$\mathbf{V}=\mathbf{2 2}$
$\mathbf{J}=\mathbf{1 0}$	$\mathbf{W}=\mathbf{2 3}$
$\mathbf{K}=\mathbf{1 1}$	$\mathbf{X}=\mathbf{2 4}$
$\mathbf{L}=\mathbf{1 2}$	$\mathbf{Y}=\mathbf{2 5}$
$\mathbf{M}=\mathbf{1 3}$	$\mathbf{Z}=\mathbf{2 6}$

EXAMPLE: Printer $=16+18+9+14+20+5+18=100$

Your 4 words are

