Here is another problem from one of my Hampden-Sydney professors.
Consider the following square and the rules that go with the square.

1	2	3
4	5	6
7	8	9

Each square is exactly one of the following colors: green, orange, red, or

Square 3 is
Square 1 is not red.

Square 5 is orange.
Square 7 is neither orange nor red.

If two squares have a common side, they are not the same color. For example squares 5 and 6 cannot both be green, but squares 1 and 5 could both be orange since they don't share a common side.

1. Which of the following statements cannot be true?
1 is green $\quad 1$ is orange $\quad 4$ is green $\quad 8$ is green $\quad 8$ is yellow
2. If the colors of the squares are such that as many as possible are red, how many of the squares must be red?

1	2	3	4	5	6

3. If square 3 is the only yellow square, which one of the following statements must be false?
1 is green $\quad 1$ is orange 4 is green $\quad 4$ is red $\quad 8$ is red
4. If the colors of the squares are such that as few as possible are green, how many squares must be green?
