3-2 Equation of Lines in Slope intercept form

Name _____

Remember that $y = mx + b$ is the equation of a line in slope-intercept form	
A helpful equation to remember is that $y - y_1 = m(x - x_1)$.	

1.	Find the equation of the line, in slope intercept form, that goes through the point (2, 8) and has a slope of -3.
2.	Find the equation of the line, in slope intercept form, that goes through the point $(-1, -2)$ and has a slope of $\frac{1}{2}$.
3.	Find the equation of the line, in slope intercept form, that goes through the point $(2, 8)$ and $(3, 10)$.
4.	Find the equation of the line, in slope intercept form, that goes through the point $(-1, -8)$ and $(-3, -12)$.
5.	Find the equation of the line, in slope intercept form, that goes through the point $(0, 4)$ and has a slope of -5.
6.	Find the equation of the line, in slope intercept form, that goes through the point $(0, 8)$ and $(2, 10)$.
7.	Give the equation of the line, in slope intercept form, that is parallel to $y = 8x - 5$ and passes through the point (1, 20).
8.	Give the equation of the line, in slope intercept form, that is parallel to $y = 2x - 1$ and passes through the point (3, 9).
9.	Give the equation of the line, in slope intercept form, that is perpendicular to $y = 2x - 5$ and passes through the point (2, 8).
10.	Give the equation of the line, in slope intercept form, that is perpendicular to $y = 4x - 5$ and passes through the point (4, 12).