6-5 Discriminant

Name \qquad

Use the discriminant of each equation to determine how many solutions exist.

1. $3 x^{2}-x-8=0 \quad$ Number of solutions $=$ \qquad
2. $2 x^{2}-4 x+2=0 \quad$ Number of solutions $=$ \qquad
3. $x^{2}-3 x-10=0 \quad$ Number of solutions $=$ \qquad
4. $4 \mathrm{x}^{2}+\mathrm{x}+10=0 \quad$ Number of solutions $=$ \qquad
5. Consider the equation $x^{2}-6 x+13=0$. No real number solutions exist.

Thus, the equation $f(x)=x^{2}-6 x+13$ does not cross the x-axis - important concept.
Determine the y-intercept and then calculate the derivative to find the vertex of the parabola. Now determine a third point on the parabola without plugging values into the equation.
y-intercept $=$ \qquad vertex $=$ \qquad $3^{\text {rd }}$ point $=$ \qquad
6. Consider the equation $x^{2}+2 x+2=0$. No real number solutions exist.

Thus, the equation $f(x)=x^{2}+2 x+2$ does not cross the x-axis - important concept.
Determine the y-intercept and then calculate the derivative to find the vertex of the parabola.
Now determine a third point on the parabola without plugging values into the equation.
y-intercept $=$ \qquad

$$
\text { vertex }=
$$

$$
3^{\text {rd }} \text { point }=
$$

