Trig Midterm Review 2019-20

Name \qquad

1. If $f(x)=3 x-1$ and $g(x)=2 x-1$, what is $f(g(2))$?
A. 8
B. 9
C. 14
D. 13
2. If $f(x)=3 x-10$ and $g(x)=2 x+1$, what is $f(g(x))$?
A. $6 x-19$
B. $6 x-13$
C. $6 x+13$
D. $6 x-7$
3. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{x-3}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. None of the above
4. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{x^{3}}{x-3}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. None of the above
5. What is the domain of $f(x)=x^{2}-9$?
A. $x \neq 3$
B. \mathbb{R}
C. $x \geq 3$
D. $x>3$
6. $\sum_{n=-2}^{1} 2 n-1$?
A. -10
B. -9
C. -8
D. -6
\qquad 7. What is the slope from $(1,4)$ to $(3,10)$?
A. 6
B. 2
C. 3
D. -2
7. What is the slope from $(\mathrm{n}, 6)$ to $(\mathrm{n}+2,7)$?
A. 1
B. $\frac{1}{2}$
C. 0
D. 2
8. What is the distance from $(-3,-2)$ to $(1,-6)$?
A. $4 \sqrt{2}$
B. $3 \sqrt{2}$
C. $2 \sqrt{3}$
D. $2 \sqrt{2}$
9. Which equation below is not in standard form?
A. $3 x-y=5$
B. $4 \mathrm{x}+\mathrm{y}=-3$
C. $-2 x+y=9$
D. $x-y=-1$
\qquad 11. Which is the equation of the line with a slope of 4 and that goes through $(2,5)$?
A. $y=-4 x-3$
B. $y=4 x-3$
C. $y=4 x+3$
D. $y=-4 x+3$
\qquad 12. Which is the equation of the line that goes through $(1,4)$ and $(3,10)$?
A. $\mathrm{y}=3 \mathrm{x}-2$
B. $y=3 x+2$
C. $y=3 x+10$
D. $y=3 x+1$
\qquad 13. Which is the equation that is parallel to $y=3 x-5$ and goes through $(3,4)$?
A. $y=3 x-1$
B. $y=3 x-2$
C. $y=3 x+1$
D. $y=3 x-5$
10. Which is the equation that is perpendicular to $\mathrm{y}=-2 \mathrm{x}+4$ and goes through $(4,1)$?
A. $y=\frac{1}{2} x+1$
B. $y=2 x-7$
C. $y=-\frac{1}{2} x+1$
D. $y=\frac{1}{2} x-1$

I

II
\qquad 15. What is the domain of the graph I above?
A. $\mathbb{R}:-1<x \leq 4$
B. $\mathbb{R}:-1 \leq x<4$
C. $\mathbb{R}:-4<x \leq 1$
D. $\mathbb{R}:-4 \leq x<1$
\qquad 16. What is the range of the graph I above?
A. $\mathbb{R}:-1<y \leq 4$
B. $\mathbb{R}:-1 \leq y<4$
C. $\mathbb{R}:-4<y \leq 1$
D. $\mathbb{R}:-4 \leq y<1$
\qquad 17. What is the domain of the graph II above?
A. $\mathbb{R}:-1<x \leq 3$
B. $\mathbb{R}:-1 \leq x<3$
C. $\mathbb{R}:-4<x \leq 4$
D. $\mathbb{R}:-4 \leq x<4$
\qquad 18. What is the range of the graph II above?
A. $\mathbb{R}:-1<y \leq 3$
B. $\mathbb{R}:-1 \leq y<3$
C. $\mathbb{R}:-4<y \leq 4$
D. $\mathbb{R}:-4 \leq y<4$
A. $\left\{\begin{array}{l}y=3 x-5 \\ y=2 x-1\end{array}\right.$
B. $\left\{\begin{array}{l}y=3 x-1 \\ y+x=15\end{array}\right.$
C. $\left\{\begin{array}{l}2 x+3 y=8 \\ 4 x+2 y=12\end{array}\right.$
D. $\left\{\begin{array}{l}2 x-y=8 \\ 3 x+y=12\end{array}\right.$
\qquad 19. What is the value of y in System A above.
A. $\mathrm{y}=11$
B. $y=7$
C. $y=6$
D. None of the above
\qquad 20. What is the value of y in System B above.
A. $y=10$
B. $y=4$
C. $y=6$
D. None of the above
21. What is the value of y in System C above.
A. $y=1$
B. $y=2$
C. $y=7$
D. None of the above
22. What is the value of y in System D above.
A. $y=1$
B. $y=4$
C. $y=2$
D. None of the above
$\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}3 & -2 \\ -1 & -4\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll}2 & 3 \\ 5 & 9\end{array}\right] \quad \mathrm{D}=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right] \mathrm{E}=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$
23. What is the $\mathrm{A}+\mathrm{B}$? NO CALCULATOR ALLOWED!
A. -2
B. 4
C. 2
D. None of the above
24. What is 3A? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}6 & 9 \\ 6 & 12\end{array}\right]$
B. $\left[\begin{array}{cc}6 & 9 \\ 6 & 15\end{array}\right]$
C. $\left[\begin{array}{cc}6 & 9 \\ 8 & 12\end{array}\right]$
D. None of the above
\qquad 25. What is AB? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}3 & -8 \\ 2 & -20\end{array}\right]$
B. $\left[\begin{array}{ll}3 & -16 \\ 2 & -12\end{array}\right]$
C. $\left[\begin{array}{cc}6 & -6 \\ -2 & -16\end{array}\right]$
D. None of the above
\qquad 26. What is BC? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}2 & 1.5 \\ -1 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}2 & .5 \\ 1 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}2 & 1.5 \\ -1.5 & 1\end{array}\right]$
D. None of the above
27. What is DE? NO CALCULATOR ALLOWED!
A. [8]
B. $[18]$
C. [20]
D. None of the above
28. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{x+6}$?
A. $x \neq-6$
B. $x>-6$
C. $x \geq-6$
D. \mathbb{R}
29. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{2 x}{2 x-6}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. \mathbb{R}
30. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{10-x}$?
A. $x \neq 10$
B. $x \leq 10$
C. $x \geq 10$
D. \mathbb{R}
\qquad 31. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{-2 x+4}$?
A. $x \neq 2$
B. $x \leq 2$
C. $x \geq 2$
D. \mathbb{R}
\qquad 32. If A is a 4×5 matrix, B a 4×3 matrix, and C a 3×5 matrix, what matrices could be multiplied?
A. A and B
B. A and C
C. B and C
D. All of them could b

Graph 1
Graph 2
Graph 3

33. What is the domain of graph 1 above?
A. $x>-3$
B. $x<-3$
C. $x \geq-3$
D. \mathbb{R}
\qquad 34. What is the range of graph 1 above?
A. $\mathrm{y}>-3$
B. $y<-3$
C. $y \geq-3$
D. \mathbb{R}
\qquad 35. What is the domain of graph 2 above?
A. $x>2$
B. $x=2$
C. $x \geq 2$
D. \mathbb{R}
\qquad 36. What is the domain of graph 3 above?
A. $x \geq-1$
B. $x<-1$
C. $x \geq 1$
D. \mathbb{R}
\qquad 37. What is the range of graph 3 above?
A. $y \geq-1$
B. $\mathrm{y}<-1$
C. $\mathrm{y} \geq 1$
D. \mathbb{R}
38. $\sum_{n=-2}^{0} n^{2}$?
A. -1
B. 5
C. 8
D. 0
39. $\sum_{n=-2}^{3} 2-n$?
A. 9
B. 11
C. 12
D. 13
40. From the 40 shirts I have, I must pick 5 to plan out my week of teaching. How many different looks would I have next week?
A. 65,800
B. 658,008
C. $78,960,960$
D. $789,609,600$
41. From the 20 kids in the class, I must pick 2 to represent my homeroom as Class Officers. How many possibilities exist?
A. 80
B. 190
C. 380
D. 720
\qquad 42. If a student body has 82 students, in how many different ways could the class elect a President, Vice President, and Secretary?
A. 72,000
B. 88,560
C. 322,240
D. 531,360
43. I have a safe in my house that has a key pad on it with the digits $0-9$ on it. If my combination is a 5 digit code, how many possible combinations exist?
A. 252
B. 67,000
C. 100,000
D. 212,540
44. Old VA license plates used to be 3 letters followed by 3 numbers.

How many license plates could the state make in this manner?
A. Between 1 - 100,000
B. Between 100,001 - 1,000,000
C. Between 1,000,001-20,000,000
D. Over $20,000,000$
45. How many 5 card hands can be dealt from a deck of cards?
(For you non-card people, there are 52 cards in a deck.)
A. Between $1-1,000,000$
B. Between $1,000,001-5,000,000$
C. Between $5,000,001-10,000,000$
D. Over $10,000,000$
46. There are 10 girls and 8 boys up for the "Hickam Award." In how many ways can 2 girls and 3 boys be selected to receive this prestigious award?
A. 101
B. 212
C. 2520
D. 3620
47. If $f(x)=2 x$ and $g(x)=5 x+10$, what is $f(g(x))$?
A. $10 x+10$
B. $10 \mathrm{x}+20$
C. $20 x+10$
D. $10 \mathrm{x}-10$
48. What would the slope of the line that is perpendicular to $2 x-4 y=10$ be?
A. 2
B. -2
C. $1 / 2$
D. $-1 / 2$
49. Which equation below is the quadratic equation?
A. $x=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
B. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c}$
C. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
50. What is the approximate distance from $(1,4)$ and $(3,10)$?
A. 6.3
B. 7.8
C. 11.2
D. None of the above
51. What is the equation of the line, in slope intercept form, that goes through the point $(8,4)$ and has a slope of -1 .
A. $y=-x-8$
B. $y=-x+4$
C. $y=-x+12$
D. None of the above
52. Give the equation of the line in standard form that is perpendicular to $y=-4 x-5$ and passes through the point $(-8,2)$.
A. $x-4 y=-16$
B. $2 x+4 y=-8$
C. $x+8 y=8$
D. None of the above
53. Which equation below is not in slope intercept form?
A. $y=-2 x+6$
B. $y=1 / 2 x-5$
C. $-y=2 x+6$
D. $y=4 x$
54. Give the equation of the line in standard form that is parallel to $12 \mathrm{x}+2 \mathrm{y}=8$ and passes through the point $(-1,2)$.
A. $6 x-y=-8$
B. $6 x+y=-4$
C. $6 x-2 y=-10$
D. None of the above
55. $\sum_{n=2}^{4}\left(2^{n}-10\right)^{n}$
A. 1232
B. 1324
C. 1346
D. None of the above
56. $\frac{96!}{94!4!}$
A. 96
B. 360
C. 480
D. None of the above
_57. $\frac{76!}{74!3!}$
A. 450
B. 950
C. 1050
D. None of the above
58. $\frac{215!}{213!}$
A. 23,220
B. 46,010
C. 52,300
D. None of the above

Graph 1

Graph 2

Graph 3

For 59-61, tell what is graphed in the system of inequalities above.
59. Graph 1
A. $\left\{\begin{array}{l}y \geq 2 x+1 \\ y \leq-x-1\end{array}\right.$
B. $\left\{\begin{array}{l}y>2 x-1 \\ y \leq-x-1\end{array}\right.$
C. $\left\{\begin{array}{l}y \geq 2 x-1 \\ y<-x-1\end{array}\right.$
D. $\left\{\begin{array}{l}y>2 x+1 \\ y \leq-x-1\end{array}\right.$
\qquad 60. Graph 2 A. $\left\{\begin{array}{l}y \leq 2 x+3 \\ y>-\frac{1}{2} x-1\end{array}\right.$
B. $\left\{\begin{array}{l}y<2 x+3 \\ y \geq-\frac{1}{2} x-1\end{array}\right.$
C. $\left\{\begin{array}{l}y \leq 2 x+3 \\ y>-2 x-1\end{array}\right.$
D. $\left\{\begin{array}{l}y<-2 x+3 \\ y \geq-\frac{1}{2} x-1\end{array}\right.$
-61. Graph 3 A. $\left\{\begin{array}{l}y>3 x-1 \\ y \geq-\frac{1}{2} x-3\end{array}\right.$ B. $\left\{\begin{array}{l}y>\frac{1}{3} x-1 \\ y \geq-\frac{1}{2} x-3\end{array}\right.$ C. $\left\{\begin{array}{l}y>-\frac{1}{3} x-1 \\ y \geq-\frac{1}{2} x-3\end{array}\right.$ D. $\left\{\begin{array}{l}y<3 x-1 \\ y \geq-\frac{1}{2} x-3\end{array}\right.$
62. My password to \log on to my computer can be any letter or digit. If I have a passcode that is 3 characters long, how many possibilities for a passcode are there?
A. 4,666
B. 7,140
C. 71,400
D. 46,656
63. How many different ways can one answer a 10 question multiple choice test that has options $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D ?
A. 210
B. 2520
C. 5040
D. None of the above
64. Pizza Boy offers a large 3 topping pizza for $\$ 13.99$ If they have 20 toppings from which you can choose, how many different possibilities can you make assuming you choose 3 different toppings?
A. 1140
B. 6840
C. 9240
D. None of the above
65. $\left[\begin{array}{ll}-2 & 5\end{array}\right] \bullet\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 2 & 3\end{array}\right]$
A. $\left[\begin{array}{lll}-1 & -12 & 15\end{array}\right]$
B. $\left[\begin{array}{lll}-9 & 8 & 15\end{array}\right]$
C. $\left[\begin{array}{lll}-1 & 8 & 12\end{array}\right]$
D. $\left[\begin{array}{lll}-9 & 8 & 12\end{array}\right]$
66. If $f(x)=4 x-5$, what is $f(f(x))$?
A. $16 x-25$
B. $16 x-15$
C. $16 x+15$
D. $16 x+25$
\qquad 67. If $\mathrm{f}(\mathrm{x})=5 \mathrm{x}-3, \mathrm{~g}(\mathrm{x})=2 \mathrm{x}-1$, and $\mathrm{h}(\mathrm{x})=8 \mathrm{x}-2$, what is $\mathrm{h}(\mathrm{f}(\mathrm{g}(\mathrm{x})))$)
A. $80 x-66$
B. $320 \mathrm{x}-104$
C. $320 \mathrm{x}+104$
D. $80 x+104$
68. If $\mathrm{h}(\mathrm{x})=2 \mathrm{x}^{3}$, what is $\mathrm{h}(\mathrm{h}(\mathrm{h}(\mathrm{x})))$?
A. $3456 x^{18}$
B. $3456 x^{27}$
C. $8192 x^{18}$
D. $8192 x^{27}$
69. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{x^{10}-8 x^{7}+2}{3 x-39}$
A. \mathbf{R} except $x \neq 13$
B. $\mathbf{R}: x>13$
C. R: $x \geq 13$
D. \mathbf{R}
70. Which of these equations is in standard form?
A. $-4 x+y=10$
B. $2 \mathrm{x}+10=\mathrm{y}$
C. $2 x-y=1 / 2$
D. $x+y=-5$
$71 \cdot \frac{916!}{914!}$
A. 916
B. 838,140
C. 943,823
D. 946,823
72. $\sum_{n=-10}^{-8} 2 n-1$
A. -55
B. -57
C. -68
D. -71
73. What is the distance between $(2,1)$ and $(4,10)$?
A. 7.3
B. 8.1
C. 9.2
D. 11.2

