Trig Midterm Review 2019-20

Name				
1.	If $f(x) = 3x - 1$ and A. 8	g(x) = 2x - 1, what is 2 B. 9	f(g(2))? C. 14	D. 13
2.	If $f(x) = 3x - 10$ and A. $6x - 19$	g(x) = 2x + 1, what is B. $6x - 13$	f(g(x))? C. $6x + 13$	D. 6x – 7
3.	What is the domain A. $x \neq 3$	of $f(x) = \sqrt{x-3}$? B. $x > 3$	C. <i>x</i> ≥3	D. None of the above
4.	What is the domain	of f(x) = $\frac{x^3}{x-3}$?		
	A. $x \neq 3$	B. $x > 3$	C. $x \ge 3$	D. None of the above
5.	What is the domain A. $x \neq 3$	of $f(x) = x^2 - 9$? B. \mathbb{R}	C. <i>x</i> ≥3	D. <i>x</i> > 3
6.	$\sum_{n=-2}^{1} 2n - 1?$	B9	C8	D -6
7.	What is the slope fro A. 6	om (1, 4) to (3, 10)? B. 2	C. 3	D2
8.	What is the slope fro	(n, 6) to $(n + 2, 7)$?		
	A. 1	B. $\frac{1}{2}$	C. 0	D. 2
9.	What is the distance A. $4\sqrt{2}$	from (-3,-2) to (1, -6) B. $3\sqrt{2}$? C. $2\sqrt{3}$	D. $2\sqrt{2}$
10.	Which equation belo A. $3x - y = 5$	by is not in standard for B . $4x + y = -3$	form? C. $-2x + y = 9$	D. $x - y = -1$
11.	Which is the equation $A. y = -4x - 3$	on of the line with a slo B. $y = 4x - 3$	ope of 4 and that goes C. $y = 4x + 3$	through (2, 5)? D. $y = -4x + 3$
12.	Which is the equation $A. y = 3x - 2$	on of the line that goes B. $y = 3x + 2$	through (1, 4) and (3, C. $y = 3x + 10$	(, 10)? D. $y = 3x + 1$
13.	Which is the equation A . $y = 3x - 1$	on that is parallel to $y = B$. $y = 3x - 2$	= 3x - 5 and goes thro C. $y = 3x + 1$	bugh $(3, 4)$? D. $y = 3x - 5$

A.
$$y = \frac{1}{2}x + 1$$
 B. $y = 2x - 7$ C. $y = -\frac{1}{2}x + 1$ D. $y = \frac{1}{2}x - 1$

A. y = 1 B. y = 4 C. y = 2 D. None of the above

$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix}$	$\mathbf{B} = \begin{bmatrix} 3 & -2 \\ -1 & -4 \end{bmatrix} \mathbf{C} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$	$ \begin{array}{c} 3\\9 \end{array} \end{bmatrix} D = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} E = $	$\begin{bmatrix} 3\\4\\2 \end{bmatrix}$		
23.	What is the $A + B$? A2	NO CALCULATO B. 4	R ALLOWED! C. 2	D. None of the above	
24.	What is 3A? NO CALCULATOR ALLOWED!				
	A. $\begin{bmatrix} 6 & 9 \\ 6 & 12 \end{bmatrix}$	$\mathbf{B}.\begin{bmatrix} 6 & 9\\ 6 & 15 \end{bmatrix}$	C. $\begin{bmatrix} 6 & 9 \\ 8 & 12 \end{bmatrix}$	D. None of the above	
25.	What is AB? NO C	ALCULATOR ALL	OWED!		
	A. $\begin{bmatrix} 3 & -8 \\ 2 & -20 \end{bmatrix}$	B. $\begin{bmatrix} 3 & -16 \\ 2 & -12 \end{bmatrix}$	$C.\begin{bmatrix} 6 & -6\\ -2 & -16 \end{bmatrix}$	D. None of the above	
26.	What is BC? NO CALCULATOR ALLOWED!				
	$A. \begin{bmatrix} 2 & 1.5 \\ -1 & 1 \end{bmatrix}$	B. $\begin{bmatrix} 2 & .5 \\ 1 & -1 \end{bmatrix}$	$C. \begin{bmatrix} 2 & 1.5 \\ -1.5 & 1 \end{bmatrix}$	D. None of the above	
27.	What is DE? NO CALCULATOR ALLOWED!				
	A. [8]	B. [18]	C. [20]	D. None of the above	
28.	What is the domain of A. $x \neq -6$	of $f(x) = \sqrt{x+6}$? B. $x > -6$	C. <i>x</i> ≥−6	D. R	
29.	What is the domain of	of $f(x) = \frac{2x}{2x-6}$?			
	A. $x \neq 3$	B. $x > 3$	C. <i>x</i> ≥3	D. \mathbb{R}	
30.	What is the domain c	of $f(x) = \sqrt{10 - x}$?	C > 10		
	A. $x \neq 10$	B. <i>x</i> ≤10	C. $x \ge 10$	D. IK	
31.	What is the domain of A. $x \neq 2$	of $f(x) = \sqrt{-2x+4}$? B. $x \le 2$	C. $x \ge 2$	D . R	
32.	If A is a 4 x 5 matrix A. A and B	, B a 4 x 3 matrix, and B. A and C	C a 3 x 5 matrix, what C. B and C	t matrices could be multiplied? D. All of them could b	

Graph 1

43.	I have a safe in my house that has a key pad on it with the digits $0-9$ on it. If my combination is a 5 digit code, how many possible combinations exist?				
	A. 252 B. 67,000	C. 100,000	D. 212,540		
44.	Old VA license plates used to be 3 letters How many license plates could the state m A. Between 1 – 100,000 C. Between 1,000,001- 20,000,000	followed by 3 numbers nake in this manner? B. Between 100,00 D. Over 20,000,000	1 — 1,000,000)		
45.	How many 5 card hands can be dealt from (For you non-card people, there are 52 can A. Between 1 – 1,000,000 C. Between 5,000,001 – 10,000,000	n a deck of cards? rds in a deck.) B. Between 1,000,0 D. Over 10,000,000	901 – 5,000,000)		
46.	There are 10 girls and 8 boys up for the "Iways can 2 girls and 3 boys be selected toA. 101B. 212	Hickam Award." In hov preceive this prestigiou C. 2520	w many s award? D. 3620		
47.	If $f(x) = 2x$ and $g(x) = 5x + 10$, what is $f(g(x) = 10x + 10)$ A. $10x + 10$ B. $10x + 20$	g(x))? C. 20x + 10	D. 10x – 10		
48.	What would the slope of the line that is per A. 2 B2	erpendicular to $2x - 4y = C$. $\frac{1}{2}$	= 10 be? D. $-\frac{1}{2}$		
49.	Which equation below is the quadratic equation A. $x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ B. $x = \frac{-b \pm b}{2a}$	uation? $\pm \sqrt{b^2 - 4ac}$ 2c	C. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
50.	What is the approximate distance from (1. A. 6.3 B. 7.8	, 4) and (3, 10)? C. 11.2	D. None of the above		
51.	What is the equation of the line, in slope intercept form,that goes through the point (8, 4) and has a slope of -1.A. $y = -x - 8$ B. $y = -x + 4$ C. $y = -x + 12$ D. None of the above				
52.	Give the equation of the line in standard form that is perpendicular to $y = -4x - 5$ and passes through the point (-8, 2). A. $x - 4y = -16$ B. $2x + 4y = -8$ C. $x + 8y = 8$ D. None of the above				
53.	Which equation below is <u>not</u> in slope inte A. $y = -2x + 6$ B. $y = \frac{1}{2}x - 5$	ercept form? C. $-y = 2x + 6$	D. $y = 4x$		
54.	Give the equation of the line in standard f 12x + 2y = 8 and passes through the point A. $6x - y = -8$ B. $6x + y = -4$	form that is parallel to c (-1, 2). C. $6x - 2y = -10$	D. None of the above		

For 59-61, tell what is graphed in the system of inequalities above.

$$\underbrace{\qquad \qquad }_{60. \text{ Graph 2} A. } \begin{cases} y \le 2x+3 \\ y > -\frac{1}{2}x-1 \end{cases} \qquad B. \begin{cases} y < 2x+3 \\ y \ge -\frac{1}{2}x-1 \end{cases} \qquad C. \begin{cases} y \le 2x+3 \\ y > -2x-1 \end{cases} \qquad D. \begin{cases} y < -2x+3 \\ y \ge -\frac{1}{2}x-1 \end{cases}$$

$$\underbrace{\qquad \qquad }_{61. \text{ Graph 3} A.} \begin{cases} y > 3x - 1 \\ y \ge -\frac{1}{2}x - 3 \end{cases} \qquad B. \begin{cases} y > \frac{1}{3}x - 1 \\ y \ge -\frac{1}{2}x - 3 \end{cases} \qquad C. \begin{cases} y > -\frac{1}{3}x - 1 \\ y \ge -\frac{1}{2}x - 3 \end{cases} \qquad D. \begin{cases} y < 3x - 1 \\ y \ge -\frac{1}{2}x - 3 \end{cases}$$

62.	52. My password to log on to my computer can be any letter or digit. If I have that is 3 characters long, how many possibilities for a passcode are there?			
	A. 4,000	В. 7,140	C. /1,400	D. 40,030
63.	How many different test that has options A A. 210 B. 25	ways can one answer a A, B, C, and D? 20 C. 50	a 10 question multiple	choice one of the above
64.	Pizza Boy offers a la	rge 3 topping pizza for	: \$13.99 If they have 2	20
	toppings from which you make assuming y A. 1140	you can choose, how r you choose 3 different B. 6840	many different possibi toppings? C. 9240	lities can D. None of the above
65.	$\begin{bmatrix} -2 & 5 \end{bmatrix} \bullet \begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 3 \end{bmatrix}$			
	A. [-1 -12 15]	B. [-9 8 15]	C. [-1 8 12]	D. [-9 8 12]
66.	If $f(x) = 4x - 5$, what A. $16x - 25$	is f(f(x))? B. 16x – 15	C. 16x + 15	D. 16x + 25
67.	If $f(x) = 5x - 3$, $g(x)$ A. $80x - 66$	= 2x - 1, and $h(x) = 8xB. 320x - 104$	x - 2, what is h(f(g(x))) C. 320x + 104)? D. 80x +104
68.	If $h(x) = 2x^3$, what is A. $3456x^{18}$	h(h(h(x)))? B. 3456x ²⁷	C. 8192x ¹⁸	D. 8192x ²⁷
69.	What is the domain o	of f(x) = $\frac{x^{10} - 8x^7 + 2}{3x - 39}$		
	A. R except $x \neq 13$	B. R : <i>x</i> > 13	C. R : $x \ge 13$	D. R
70.	Which of these equat A. $-4x + y = 10$	ions is in standard for B. 2x + 10 =	m? y C. $2x - y = \frac{1}{2}$	² D. x + y = -5
71	$\frac{916!}{914!}$			
	A. 916	B. 838,140	C. 943,823	D. 946,823
72.	$\sum_{n=-10}^{-8} 2n - 1$ A55	B57	C68	D71
73.	What is the distance	between (2, 1) and (4,	10)?	
	A. 7.3	B . 8.1	C. 9.2	D. 11.2