Trig Year $4^{\text {th }}$ Nine Weeks Review

Name \qquad
\qquad 1. Using the domain of $\left(0^{\circ}, 360^{\circ}\right]$, solve $(2 \cos x+1)(\cos x+1)=0$
A. $30^{\circ}, 150^{\circ}, 180^{\circ}$
B. $180^{\circ}, 225^{\circ}, 315^{\circ}$
C. $120^{\circ}, 180^{\circ}, 240^{\circ}$
D. $120^{\circ}, 180^{\circ}, 315^{\circ}$
2. Using the domain of $\left(0^{\circ}, 360^{\circ}\right]$, solve $2 \cos x=\sqrt{3}$
A. $30^{\circ}, 150^{\circ}$
B. $60^{\circ}, 120^{\circ}$
C. $120^{\circ}, 150^{\circ}$
D. $30^{\circ}, 330^{\circ}$

Figure 1

Figure 2

Figure 3

\qquad 3. What equation is graphed in figure 1 above?
A. $\mathrm{y}=2 \cos \mathrm{x}$
B. $y=3 \cos (10 x)$
C. $y=3 \cos (2 x)$
D. $y=4 \cos x$
\qquad 4. What equation is graphed in figure 2 above?
A. $y=2 \sin x$
B. $\mathrm{y}=2 \sin (2 \mathrm{x})$
C. $y=2 \sin (1 / 2 x)$
D. $y=2 \sin (1 / 4 x)$
\qquad 5. What equation is graphed in figure 3 above?
A. $y=3 \sin (3 x)$
B. $y=3 \sin (4 x)$
C. $\mathrm{y}=3 \sin (1 / 2 \mathrm{x})$
D. $y=3 \sin (8 x)$
6. What is the horizontal asymptote of $y=\frac{3 x^{5}+2}{4 x^{2}+2 x+1}$?
A. None exist
B. $\mathrm{y}=0$
C. $y=\frac{3}{4}$
D. $y=3$
7. What is the derivative of $f(x)=2 x^{6}+4 x^{2}-3 x+3$?
A. $12 x^{7}+8 x^{3}-3 x^{2}+3 x$
B. $12 x^{5}+4 x-3$
C. $12 x^{5}+8 x-3$
D. None of the above
8. What is the derivative of $f(x)=5 x^{-4}+x^{-2}$
A. $-20 x^{-3}-2 x^{-3}$
B. $-20 x^{-5}-2 x^{-3}$
C. $-20 x^{-5}-2 x^{-1}$
D. $-20 x^{-3}-2 x^{-1}$
9. What is the derivative of $\mathrm{f}(\mathrm{x})=\frac{5}{x^{6}}+\frac{3}{x^{2}}$
A. $\frac{30}{x^{7}}+\frac{6}{x^{3}}$
B. $\frac{-30}{x^{5}}-\frac{6}{x^{3}}$
C. $\frac{-30}{x^{5}}-\frac{6}{x^{2}}$
D. $\frac{-30}{x^{7}}-\frac{6}{x^{3}}$
10. Solve for $\mathrm{x}: \quad \log _{5} \frac{1}{5}=x$
A. 1
B. -1
C. $\frac{1}{3}$
D. $\frac{1}{2}$
\qquad 11. Evaluate $\log _{2} 64$
A. 5
B. -5
C. 6
D. 7
\qquad 12. Solve for $\mathrm{x}: \log _{3} x=5$
A. -2
B. 125
C. 243
D. 1056
13. What is $\frac{2 \pi}{15}$ radians in degree measurement?
A. 10°
B. 24°
C. 36°
D. 44°
\qquad 14. What is $\frac{\pi}{5}$ radians in degree measurement?
A. 108°
B. 36°
C. 24°
D. 98°
15. On a unit circle what point is associated with $\frac{\pi}{3}$?
A. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
D. $(0,1)$
16. On a unit circle what point is associated with $\frac{\pi}{4}$?
A. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
D. $(0,1)$
17. What is $\frac{4 \pi}{5}$ radians in degree measurement?
A. 134°
B. 144°
C. 146°
D. 156°
18. What is $\frac{\pi}{18}$ radians in degree measurement?
A. 8°
B. 10°
C. 12°
D. 18°
\qquad 19. On a unit circle what point is associated with $\frac{\pi}{3}$?
A. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
C. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
D. $(0,1)$

Figure 1

Figure 5

Figure 2

Figure 6

Figure 3

Figure 7

Figure 4

Figure 8

20. Rounded to the nearest whole number, what is x in Figure 1 above?
A. 10
B. 12
C. 15
D. 18
\qquad 21. Rounded to the nearest whole number, what is x in Figure 2 above?
A. 28
B. 32
C. 36
D. 42
\qquad 22. Rounded to the nearest whole number, what is x in Figure 3 above?
A. 24
B. 48
C. 54
D. 64
\qquad 23. Rounded to the nearest whole number, what is x in Figure 4 above?
A. 10
B. 12
C. 13
D. 17
24. Rounded to the nearest whole number, what is x in Figure 5 above?
A. 16
B. 18
C. 20
D. 24
25. Rounded to the nearest whole number, what is θ in Figure 6 above?
A. 24°
B. 32°
C. 36°
D. 52°
\qquad 26. Rounded to the nearest whole number, what is θ in Figure 7 above?
A. 45°
B. 49°
C. 54°
D. 56°
27. Rounded to the nearest whole number, what is θ in Figure 8 above?
A. 21°
B. 23°
C. 26°
D. 34°
28.. On a unit circle what point is associated with $\frac{3 \pi}{2}$?
A. $(1,0)$
B. $(-1,0)$
C. $(0,-1)$
D. $(0,1)$
29. On a unit circle what point is associated with 180° ?
A. $(1,0)$
B. $(-1,0)$
C. $(0,-1)$
D. $(0,1)$
30. What is 18° in radians.
A. $\frac{\pi}{5}$
B. $\frac{\pi}{10}$
C. $\frac{\pi}{20}$
D. $\frac{\pi}{30}$
\qquad 31. What is 40° in radians.
A. $\frac{\pi}{7}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{11}$
D. $\frac{\pi}{12}$
32. What is 15° in radians.
A. $\frac{\pi}{7}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{11}$
D. $\frac{\pi}{12}$
33. In which quadrant is $\frac{2 \pi}{3}$?
A. I
B. II
C. III
D. IV
_34. In which quadrant is $\frac{4 \pi}{3}$?
A. I
B. II
C. III
D. IV
35. In which quadrant is $-\frac{11 \pi}{6}$?
A. I
B. II
C. III
D. IV
36. When $\sin \theta=\frac{8}{17}$ and the terminal side of θ is in the $1^{\text {st }}$ quadrant, what is the $\tan \theta$?
A. $\frac{8}{15}$
B. $\frac{15}{17}$
C. $\frac{17}{15}$
D. $\frac{17}{15}$
37. When $\tan \theta=\frac{4}{3}$ and the terminal side of θ is in the $1^{\text {st }}$ quadrant, what is the $\cos \theta$?
A. $\frac{3}{4}$
B. $\frac{4}{5}$
C. $\frac{3}{5}$
D. $\frac{1}{5}$
\qquad 38. What is the vertical asymptote of $y=\frac{2 x^{3}+5}{x+4}$?
A. $x=4$
B. $x=-4$
C. $x=2$
D. No vertical asymptote
39. In the equation $y=8 \sin \left(3 \theta+60^{\circ}\right)$, what is the amplitude?
A. 8
B. 20°
C. 60°
D. 120°
40. In the equation $y=8 \sin \left(3 \theta+60^{\circ}\right)$, what is the period?
A. 8
B. 20°
C. 60°
D. 120°
41. In the equation $y=8 \sin \left(3 \theta+60^{\circ}\right)$, what is the phase shift?
A. -8
B. -20°
C. -60°
D. -120°
42. If $\sin \alpha=\frac{8}{17}$ and $\tan \beta=\frac{3}{4}$, what is $\cos (\alpha+\beta)$
A. $\frac{32}{85}$
B. $\frac{36}{85}$
C. $\frac{48}{85}$
D. $\frac{68}{85}$
43. If $\sin \alpha=\frac{5}{13}$ and $\tan \beta=\frac{7}{24}$, what is $\sin (\alpha-\beta)$
A. $\frac{32}{325}$
B. $\frac{36}{325}$
C. $\frac{48}{325}$
D. $\frac{-68}{325}$
44. Simplified $\sin x \cot x$ is
A. $\tan x$
B. 1
C. $\sin x$
D. $\cos x$
\qquad 45. Simplified $\frac{\tan x \bullet \cos x}{\sin x}$ is
A. $\tan x$
B. 1
C. $\sin x$
D. $\cos x$
46. Simplify: $\cot \Theta \bullet \cos \Theta \bullet \sin \Theta$
A. $\tan \theta$
B. 1
C. $\sin ^{2} \Theta$
D. $\cos ^{2} \theta$
47. Simplify: $\quad \tan \Theta \bullet \sec \Theta \bullet \sin \Theta$
A. $\tan ^{2} \theta$
B. 1
C. $\sin ^{2} \theta$
D. $\cos ^{2} \theta$
48. Simplify: $\frac{\cos \theta \bullet \csc \theta}{\tan \theta}$
A. $\tan ^{2} \theta$
B. $\cot ^{2} \Theta$
C. $\sin ^{2} \Theta$
D. $\cos ^{2} \theta$
49. Given that $\sin \theta=\frac{\sqrt{3}}{3}$ and that θ is in the first quadrant, find $\cos 2 \theta$.
A. 1
B. -1
C. $\frac{7}{25}$
D. $\frac{1}{3}$
50. Given that $\tan \theta=\frac{3}{4}$ and that θ is in the first quadrant, find $\sin 2 \theta$.
A. $\frac{24}{25}$
B. $\frac{7}{25}$
C. $-\frac{9}{25}$
D. $-\frac{11}{25}$
51. Using the domain of $\left(0^{\circ}, 360^{\circ}\right]$, solve
$2 \sin \mathrm{x}=1$
A. $30^{\circ}, 150^{\circ}$
B. $60^{\circ}, 300^{\circ}$
C. $225^{\circ}, 315^{\circ}$
D. $180^{\circ}, 360^{\circ}$
52. Solve for $\mathrm{x}: \quad \log _{2} \frac{1}{8}=x$
A. 3
B. -3
C. $1 / 2$
D. None of the above
53. Solve for $\mathrm{x}: \quad \log _{2} \frac{x+1}{3}=5$
A. 93
B. 94
C. 95
D. 96

