Chapter 11 Practice Test

Name:	_ Time>	Start:	_ Finish:	Total Time =
Determine if the sequence given Put A for arithmetic, G for Geor			ometric seq	uence, or neither.
1.4, 7, 10, 13, 16,		2.	.7, 12, 18, 22	2, 27,
3.10, 15, 22.5, 33.75		4.	. 160, 144, 12	29.6,
5.4, 8, 16, 32, 64,		6.	1.2, 3.7, 6.2	2, 8.7, 11.2,
Find the Explicit Formula for th you have. The formulas are	e sequences below	. Make su	re to determ	ine what sequence typ
Aritmetic: $a_n = a_1 + (n-1)d$	Geometric:	$a_n = a_1 \bullet r$, <i>n</i> -1	
	7. 12, 15, 18, 21,	, 24,		
	3. 10, 17, 24, 31,	, 38		
	9. 2, 6, 18, 54, 10	62		
	10. 800, 400, 200,	, 100, 50,	•	
	1185, -97, -109,	, -121, -133	,	
Given the first term and the consequences.	nmon difference, fi	ind the 30 th	term of thes	se arithmetic
12. $a_1 = 14$, $d = 4$	13. $a_1 = -8$, d = 20		$ 14. \ a_1 = -5, \ d = \frac{1}{2} $
After determining what type of	sequence you have	e, find the 2	25 th term of t	hat sequence.
15. 4, 23, 42, 61,		10	6. 2, 5, 12.5	5, 31.25,
17. 240, 120, 60, 30,		18	8. 120, 110	, 100, 90,
1925. 1. 4. 16		20	09980.	-61 -42

In the following Geometric sequences, find the r value to help fill in the two missing blanks. $a_n = a_1 \bullet r^{n-1}$ Geometric:

21. 3, ______, ____, 1536

Calculate the following summations.

$$22. \sum_{n=-1}^{2} -3n-4$$

$$23. \sum_{n=6}^{8} n^{n-6}$$

Below you are given either an arithmetic sequence or geometric sequence. Find the sum of the first 10 terms after deciding what formula to use.

Arithmetic: $S_n = \frac{n}{2} [2a_1 + (n-1)d]$ Geometric: $S_n = \frac{a_1(1-r^n)}{1-r}$ $S_{\infty} = \frac{a_1}{1-r}, |r| < 1$

$$S_{\infty} = \frac{a_1}{1-r}, |r| < 1$$

_____ 24. 9, 18, 36, 72, . . .

_____ 25. 1200, 600, 300, 150, . . .

_____ 26. 2, 12, 22, 32, ...

_____27. -90, -88, -86, -84, . . .

_____28. .25, .50, 1, 2, . . .

______29. 2, 53, 104, 155, ...

30. -90, 180, -360, 720, . . .

Determine the sum of the infinite geometric series below.

 $31. \quad 90, 45, 22.5, 11.25, \dots \quad 32. \quad 90, 30, 10, 3\frac{1}{3}, \dots$

 $33. 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ _____34. 64, -32, 16, -8,