1. Which expression is equivalent to $\frac{3n}{n+3} + \frac{5}{n-4}$ if no denominator equals zero?

$$\bigcirc$$
 A $\frac{3n^2-7n+3}{(n+3)(n-4)}$

$$\bigcirc$$
 B $\frac{3n^2-7n+15}{(n+3)(n-4)}$

$$\bigcirc$$
 c $\frac{3n^2 + 5n + 3}{(n+3)(n-4)}$

$$\bigcirc$$
 D $\frac{3n^2+5n+15}{(n+3)(n-4)}$

2. Which number is equivalent to (-6-i)+5i-(11+13i)?

- A -17-9i
- B -17 + 17i
- C -5-9i
- D -5+17i

3. Which of the following is the factored form of $x^3 - 216$?

- \bigcirc A $(x-6)^3$
- \bigcirc **B** $(x-6)(x^2+36)$
- \bigcirc **C** $(x-6)(x^2+12x+36)$
- \bigcirc **D** $(x-6)(x^2+6x+36)$

- 4. Which expression is equivalent to $\sqrt{75x^3} \sqrt{27x^3}$, if x > 0?
- \bigcirc A $4x\sqrt{6x}$
- \bigcirc **B** $4x\sqrt{3x}$
- \bigcirc C $2x\sqrt{6x}$
- \bigcirc **D** $2x\sqrt{3x}$
- 5. Assuming that no denominator equals zero, which is equivalent to $\frac{r^2-r-6}{(r-2)(r-3)}$?
 - \bigcirc A $\frac{r+2}{r-2}$

 \bigcirc c $\frac{r+2}{r-1}$

 \bigcirc B $\frac{r+3}{r-3}$

- \bigcirc **D** $\frac{2(r-1)}{r-2}$
- 6. Which expression is equivalent to $\sqrt[4]{16x^{15}y^{17}}$, where x > 0 and y > 0?
 - \bigcirc **A** $4x^{11}y^{13}$
 - \bigcirc **B** $4x^{\frac{15}{4}}y^{\frac{17}{4}}$
 - \bigcirc **C** $2x^{11}y^{13}$
- \bigcirc **D** $2x^{\frac{15}{4}}y^{\frac{17}{4}}$
- 7. Which is equivalent to $(6 + \sqrt{7})(5 + \sqrt{7})$?
 - \bigcirc A $11 + 2\sqrt{7}$
 - **B** $30 + 11\sqrt{7}$
 - \bigcirc **C** 30 + 18 $\sqrt{7}$
 - **D** $37 + 11\sqrt{7}$

8. Directions: Click and drag each selected term to the correct box.

Simplify completely: ³√162x⁶y⁷

- 9. Which expression is equivalent to $x^{\frac{3}{7}}y^{\frac{36}{7}}$?
 - \bigcirc A $\frac{1}{7}\sqrt{x^3y^{36}}$ \bigcirc B $\frac{1}{7}y^5\sqrt{x^3y}$ \bigcirc C $y^5\sqrt[3]{x^3y}$ \bigcirc D $x^3y^5\sqrt[3]{y}$

- 10. Directions: Click and drag each selected binomial to the box Factor the following polynomial.

$$8x^2 - 18xy - 5y^2 =$$

(x+5y)	(2x-5y)	(2x-y)	(4x+y)	(4x + 5y)	(8x-y)
, ,	15.7	, ,	1		

- 11. Which statement illustrates the symmetric property of equality?
 - \bigcirc **A** If $7\sqrt{x} + 17i = 49i$, then $7\sqrt{x} + 17i = 49i$.
 - **B** If $7\sqrt{x} + 17i = 49i$, then $49i = 7\sqrt{x} + 17i$.
 - **C** If $7\sqrt{x} + 17i = 49i$ and $49i = 12\sqrt{x} 3i$, then $7\sqrt{x} + 17i = 12\sqrt{x} 3i$.
 - **D** If $7\sqrt{x} + 17i = 49i$ and $7\sqrt{x} + 17i y = -35i$, then 49i y = -35i.
- Directions: Click on all correct solutions. 12.

Identify each expression that is equivalent to (i).

$$\frac{n-15}{9n}$$

$$\frac{15-n}{3n^5}$$

Assuming no denominator equals zero, which expression is equivalent to the given expression?

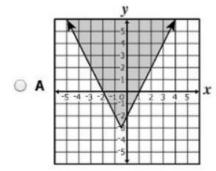
 \bigcirc A $\frac{-n^4}{3}$

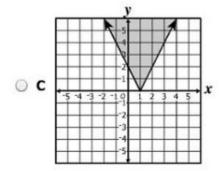
 \circ c $-\frac{3}{n^4}$

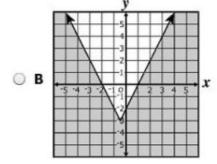
 \bigcirc B $\frac{n^4}{3}$

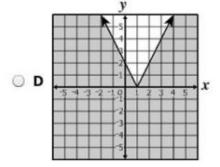
 \bigcirc D $\frac{3}{n^4}$

14. What is the solution set of $\sqrt{8x-1}+4=8$?

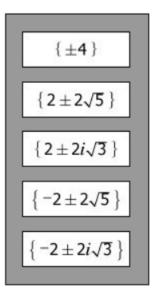

 \bigcirc A $\left\{\frac{67}{8}\right\}$


 \circ c $\left\{\frac{17}{8}\right\}$


 \bigcirc B $\left\{\frac{61}{8}\right\}$


 \bigcirc D $\left\{\frac{15}{8}\right\}$

15. Which graph best represents the solution for $y \ge |2x + 1| - 3$?



- 16. Directions: Click on the correct answer.
 - What is the solution set to $x^2 = 16 4x$?

- 17. What is the solution set for $\sqrt[3]{\frac{1}{4}x+3}=2$?
 - \bigcirc A $\left\{\frac{5}{4}\right\}$
 - \bigcirc B $\left\{\frac{11}{4}\right\}$
 - C {20}
 - O D {44}
- 18. What is the solution to |x+4| < 2?
 - \bigcirc **A** x < -6 or x > -2
 - \bigcirc **B** -6 < x < -2
 - \bigcirc **C** x < -2
 - **D** 2<x<6

19. The graph of g(x) is shown.

20. Given: $\begin{cases} x + y + 10 = 0 \\ x^2 + y - 2 = 0 \end{cases}$

What are the x-values for the solutions to the given system of equations?

$$\bigcirc$$
 A $x = -3, -7$

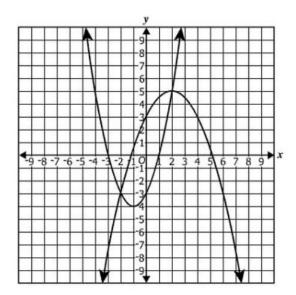
$$\bigcirc$$
 B $x = -3, 4$

$$\bigcirc$$
 C $x = -4,3$

$$\bigcirc$$
 D $x = 4, -14$

21. Which is a solution for $\sqrt[4]{w-4} + 11 = 14$?

$$\bigcirc$$
 A $w = 8$


$$\bigcirc$$
 B $w = 16$

$$\bigcirc$$
 C $w = 77$

$$\bigcirc$$
 D $w = 85$

22. Directions: Click on the grid to plot each point that is a solution. You must plot all correct solutions.

The graph of a system of two equations is shown on the grid. Identify only the apparent solutions to this system of equations.

- 23. Which is a solution to $\frac{4n-37}{3} = \frac{10}{n}$, if $n \neq 0$?
 - O A -10
 - \bigcirc B $\frac{-27}{4}$
 - \circ c $-\frac{10}{11}$
 - \bigcirc D $-\frac{3}{4}$
- 24. Which is a solution of |2x-7|+1=9?
 - \bigcirc **A** $x = \frac{17}{2}$

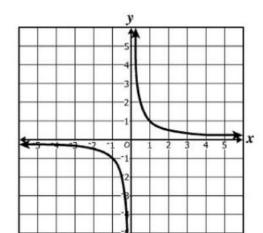
 \bigcirc **c** $x = \frac{1}{2}$

 \bigcirc **B** $x = \frac{1}{2}$

 \bigcirc **D** $x = \frac{-3}{2}$

25. Directions: Type your answer in the box.

If $x \neq 0$, what is the solution to the following equation?


$$\frac{\mathbf{1}-x}{x}+\mathbf{2}=\frac{\mathbf{7}}{x}$$

- 26. A solution to a quadratic equation is $13 11i\sqrt{7}$. Which of the following must also be a solution to this equation?
 - \bigcirc A $-13-11i\sqrt{7}$
 - B $-13 + 11i\sqrt{7}$
 - C 13-11 $i\sqrt{7}$
 - **D** $13 + 11i\sqrt{7}$
- 27. Which of the following functions does NOT have a range of only the real numbers greater than or equal to zero?
 - \bigcirc **A** $f(x) = \sqrt{4-x}$
 - \bigcirc **B** f(x) = |x-4|
 - \bigcirc **C** $f(x) = x^4$
 - \bigcirc **D** $f(x) = \log x$
- 28. Directions: Type your answer in the box.

What is the sum of this infinite series?

$$100 + 60 + 36 + \frac{108}{5} + \dots$$

29. The graph of a parent function is shown.

$$a(x) = \left(\frac{1}{x}\right)^{(x-1)}$$

 \bigcirc A $g(x) = -\log(x-1)$

$$\bigcirc$$
 B $g(x) = \left(\frac{1}{3}\right)^{(x-1)}$

$$\bigcirc$$
 C $g(x) = 3^{(x-1)}$

$$\bigcirc$$
 D $g(x) = \frac{3}{x-1}$

- 30. Which number is a zero of $f(x) = \log(4x 1)$?

 - \bigcirc A $\frac{7}{2}$ \bigcirc B $\frac{11}{4}$ \bigcirc C $\frac{1}{2}$ \bigcirc D $\frac{1}{4}$
- 31. What is the equation of the horizontal asymptote of the graph of the following equation?

$$f(x) = 6^{(x-5)} - 4$$


$$\bigcirc$$
 A $v = 6$

$$\bigcirc$$
 A $y = 6$ \bigcirc **C** $y = -4$

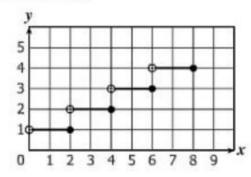
$$\bigcirc$$
 B $y = 0$ \bigcirc **D** $y = -5$

$$\bigcirc$$
 D $y = -5$

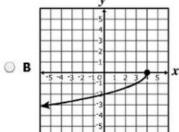
32. Which function best represents this graph?

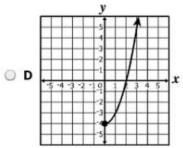
$$\bigcirc$$
 A $f(x) = 2^{(x+2)}$

$$\bigcirc$$
 B $f(x) = 2^{(x-2)}$

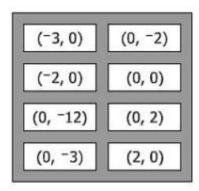

$$\bigcirc$$
 c $f(x) = 2^x - 3$

$$\bigcirc$$
 D $f(x) = 2^x - 4$


- 33. The graph of $g(x) = \log(2x)$ has
 - A no x-intercept or y-intercept
 - B one x-intercept and no y-intercept
 - C two x-intercepts and no y-intercept
 - D one x-intercept and one y-intercept
- 34. Throughout which of the following intervals is $f(x) = (x-1)(x-4)^2$ only decreasing?
 - $\bigcirc A \infty < x < 0$
 - B ¬∞ < x < 1
 </p>
 - C 1<x<4
 - D 2<x<4</p>
- 35. Given: $f(x) = \log(x 16) + 15$


What is the equation of an asymptote of the graph of the given function?

- \bigcirc **A** x = 16
- \bigcirc **B** y = 16
- \bigcirc **C** x = 15
- \bigcirc **D** y = 15
- 36. The graph of a function is shown on the grid.
 What appears to be the range of this function?
 - \bigcirc A $\{ y \mid y = 1, 2, 3, 4 \}$
 - \bigcirc **B** $\{ y \mid y = 0, 2, 4, 6, 8 \}$
 - \bigcirc **c** $\{y | 1 < y < 4\}$
 - \bigcirc **D** $\{y \mid 0 < y < 8\}$

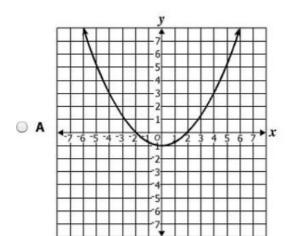


37.			f ostriches are normally distributed. within 3 standard deviations of the	
0	Α	0.3%		
0	В	5%		
0	С	95%		
0	D	99.7%		
38.	w	hich of these situations involves	a combination?	
0	A	Determining how many different gro	oups of 3 employees can be chosen from	n 10 employees
0	В	Determining how many different sea	ating charts can be made placing 7 peop	ple around a table
0	c	Determining how many different wa	ays 8 runners can be assigned lanes on a	a track for a preliminary race
0	D	Determining how many different 6-l	etter passwords can be made using the	letters in the word "pencil"
39.		nat is the 14th term of the arithme A. 130 B. 137	tic sequence with a first term of 7 an C. 147 D . 221	
		e graph of the function $oldsymbol{g}$ is shown the following grid.	Which graph best represents t	the inverse of g ?
		y -5 4 3 2 10 1 2 3 4 5 x	y 5 4 3 3 1 1 2 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7	C -5-4-3-2-10 1 2 3 4 5 x
			<i>y</i>	y s 1

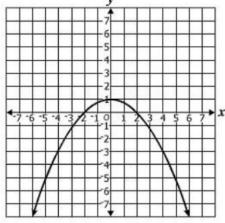
- 41. Directions: Click on a box to choose each ordered pair you want to select. You must select all correct ordered pairs.
 - Identify each of the x- and y-intercepts of the function $h(x) = x^3 + 3x^2 4x 12$.

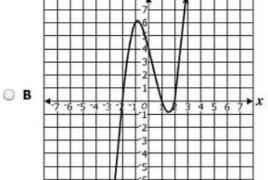
- 42. Which of the following describes the end behavior of $y = -x^2 + bx + c$ as x approaches either positive or negative infinity?
 - A v approaches positive infinity
 - B y approaches negative infinity
 - C v approaches c
 - \bigcirc **D** y approaches $\frac{c}{b}$
- 43. If $f(x) = \frac{2}{3}x^2 + 1$ and g(x) = 6x 15, which polynomial is equivalent to g(f(x))?
 - \bigcirc A $4x^2 13$
 - \bigcirc **B** $4x^2 9$
 - \bigcirc C $4x^3 10x^2 + 6x 15$
 - \bigcirc **D** $16x^2 80x + 101$
- 44. The domain of the function $f(x) = \frac{x+3}{x^2+5x-24}$ is all real numbers except
 - A -8, -3, 3 C -3, 8
 - B -8, 3 D 8

- 45. The amount of work (W) done when lifting an object varies jointly with the mass of the object (M) and the distance the object is lifted (D). Which equation models this relationship?
 - \bigcirc **A** $W = \frac{k}{MD}$
 - $\bigcirc \ \, \mathbf{B} \ \, W = \frac{kM}{D}$
 - \bigcirc C W = kMD
 - $\bigcirc \ \, \mathbf{D} \ \, W = \frac{kD}{M}$
- 46. Madison deposited \$1,000 into a savings account that compounds interest yearly. After her initial deposit, Madison did not withdraw or deposit any money from this account. The table below shows the amount in her savings account over a period of years.

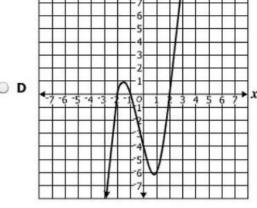

Amount in Savings Account

Number of Years After the Deposit	Amount in Savings
2	\$1,123.60
4	\$1,262.48
6	\$1,418.52
8	\$1,593.85
10	\$1,790.85


Using the exponential curve of best fit, which is closest to the expected amount in the savings account 30 years after the time Madison deposited the initial \$1,000?


- O A \$2,854
- \$3,291
- O C \$5,743
- O D \$16,854

47. Which graph best represents a function with zeros of -2, -1, and 2?



- 48. The number of permutations of 8 objects taken 3 at a time is
 - **A**. 40,320
- **B**. 6,720
- **C**. 4,920
- **D**. 336
- 49. If y varies inversely as the square root of x, what is the constant of proportionality if y = 16 when x = 4?
 - **A.** 4
- **B**. 8
- **C**. 32
- **D**. 64
- 50. Which of the following describes the root(s) of the equation $9x^2 = 6x 1$?
 - A Exactly one real root
 - B Two distinct real roots
 - C Exactly one imaginary root
 - D Two distinct imaginary roots