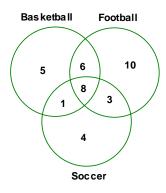
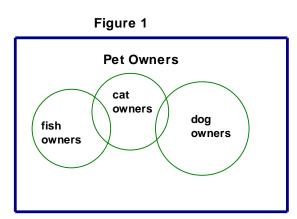
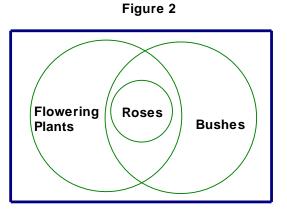
Honors Geometry Midterm Questions (Ch. 1-6)

Name		
1.	What is the midpoint of a line that has endpoints at $(0, 3)$ and $(6, -1)$?A. $(12, 2)$ B. $(3, 1)$ C. $(12, -5)$ D.	(3, 2)
2.	If X is the midpoint of \overline{CN} and $CX = 2n - 10$, what is CN? A. $n-5$ B. $4n-20$ C. $4n$ D.	40
3.	If C is between X and Y with $CX = 8n - 4$ and $CY = 2n + 10$, what is A. $6n - 6$ B. $6n - 14$ C. $10n + 6$ D.	XY? 10n – 6
4.	What is the midpoint of a line that has endpoints at $(-2, -3)$ and $(8, -1)^{\circ}$ A. $(6, -4)$ B. $(6, -2)$ C. $(3, -2)$ D.	
5.	If B is the midpoint of \overline{AC} and $AC = 8n - 2$, what is AB? A. $4n - 1$ B. $16n - 4$ C. $4n - 2$ D.	16n + 4
6.	If C is between X and Y with $XY = 6n - 4$ and $CY = n + 1$, what is CX A. $5n - 3$ B. $5n - 5$ C. $7n - 3$ D.	X? 7n – 5
7.	What are the measures of two complementary angles if the difference of their measures is 8° ?	
8.	What are the measures of two supplementary angles if the difference of their measures is 8°?	41, 49 41, 49
9.	If $\angle A$ and $\angle B$ are complementary angles with $\angle A = 80^\circ$, what is $\angle B$ A. 10° B. 20° C. 100° D.	8? 120°
10.	If $\angle A$ and $\angle B$ are supplementary angles with $\angle A = 80^\circ$, what is $\angle B$ A. 10° B. 20° C. 100° D.	? 120°
11.	A is at $(-1, 2)$ and B is at $(3, 8)$. What are the coordinates of the midped A. $(1, 4)$ B. $(1, 5)$ C. $(2, 5)$ D.	oint of \overline{AB} ? (2, 4)
12.	If the radius of a circle is 20 cm, what is the circumference? (Ignore u A. 20π B. 40π C. 80π D.	units) 400π
13.	What is the area of a circle with a radius of 6 cm? (Ignore units)A. 6π B. 12π C. 18π D.	36π
14.	What is the perimeter of a square with an area of 25 cm²?A. 20 cmB. 25 cmC. 50 cmD.	625 cm
15.	\overrightarrow{BX} bisects $\angle ABC$. If $\angle ABX = 30^\circ$, what is $\angle ABC$? A. 15° B. 30° C. 60° D.	120°

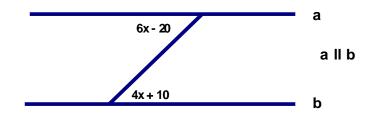

16.	Which of these statements is false? A. $\overrightarrow{AB} = \overrightarrow{BA}$ B. $\overrightarrow{AB} = \overrightarrow{BA}$	C. $\overrightarrow{AB} = \overrightarrow{BA}$	D. All are true.
17.	Which description best describes a s A. a regular convex octagon C. a regular concave octagon		-
18.	Which equation would be perpendic	cular to the $y = -\frac{1}{7}x + 3?$	
	A. $y = -\frac{1}{7}x - 3$ B. $y = \frac{1}{7}x + \frac$	3 C. $y = 7x - 5$	D. None of the above
19.	If you walk 12 miles due East and the from your starting point?	hen 16 miles due South, how	far are you
	A. 20 miles B. 24 miles	C. 28 miles	D. 36 miles
20.	If you walk 35 miles due North and		ded to the nearest mile
	how far are you from your starting pA. 13 milesB. 33 miles	C. 59 miles	D. 61 miles
21.	If the diagonal distance of a rectang what is the other side length?	le is 97 cm and one of the side	es is 65 cm,
	A. 71 cm B. 72 cm	C. 117 cm	D. 118 cm
22.	How many planes does a dice have? A. 6 B. 4	? C. 0	D. 8
23.	If three points all lie on a line, the p A. segment bisectors C. derivatives	oints are said to be what? B. coplanar D. collinear	
24.	If $\angle A$ and $\angle B$ are vertical angles w		
	and $\angle B = 4n + 20$, what is the mea A. 10 B. 20	surement of $\angle B$? C. 80	D. 100
25.	If $\angle A$ and $\angle B$ are a linear pair with and $\angle B = 9n + 20$, what is the mea		
	A. 22 B. 12	C. 52	D. 42
26.	If $\angle A$ and $\angle B$ are vertical angles w and $\angle B = 2n + 10$, what is the mea A. 110 B. 80		D. None of the above
27.	If two angles are vertical angles, the A. True B. False	e sum of their measures is 180	degrees.
28.	Complementary angles add up to 18 A. True B. False	30 degrees.	

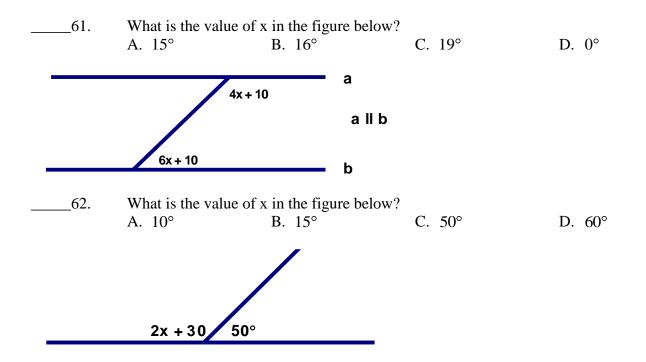
For 29-31 consider the statement "If you are nice, you have a lot of friends."

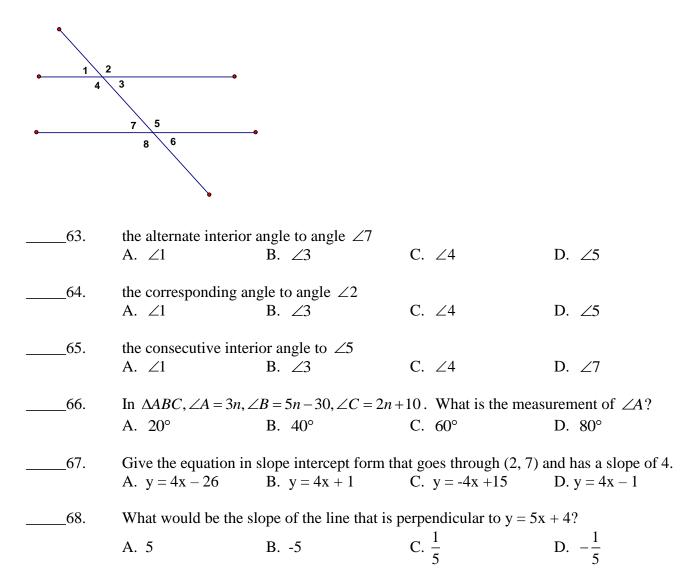

29.	If you have a lot of friends, then you are nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
30.	If you are not nice, you don't have a lot of friends is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
31.	If you don't have a lot of friends, then you are not nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
32.	Consider the statement: "If an angle is 90 degrees, it is a right angle." Is the converse of this statement true or false? A. True B. False
33.	Consider the statement: "If you live in Radford, you live in Virginia." Is the contrapositive of this statement true or false? A. True B. False
34.	The converse of all dogs like to chase cats is that some dogs like to chase cats.A. TrueB. False
35.	The inverse of "if you are old, you have a big head" is " if you don't have a big head, then you are not old." A. True B. False
36.	The converse of all bald men are funny looking is no bald men are funny looking.A. TrueB. False
37.	The contrapositive of "if you have a dog, you like cats" is "if you don't like cats, you love dogs." A. True B. False
38.	"If you like dogs, you like cats" is represented by $p \rightarrow q$. What would be the symbolic representation of "if you don't like cats, you like dogs"?
39.	A. $\sim p \rightarrow q$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $\sim q \rightarrow \sim p$ "If you have a laptop, then you have a computer" is represented by $p \rightarrow q$. What is the symbolic representation of "If you have a computer, then you
	don't have a laptop"?Image: product of the second sec
40.	If $p \to q$, and $q \to r$, then A. $r \to p$ B. $p \to r$ C. $\sim r \to p$ D. $r \to \sim p$
41.	Let p represent $\sqrt{11} = z$, and let q represent z is a rational number. What is a symbolic representation of the statement: "If $\sqrt{11} = z$, then z is not a rational number"? A. $q \rightarrow p$ B. $p \rightarrow \neg q$ C. $\neg q \rightarrow p$ D. $q \rightarrow \neg p$


42.	BC = 10, then 6 + BC B. Addition	= 10 demonstrates wha C. Substitution	at property? D. Symmetric
43.	NP, then AB = BC den B. Addition	nonstrates what propert C. Substitution	y? D. Symmetric
44.	,	ten $\angle 1 + \angle 5 + \angle 6 =$ C. Symmetric	
45.	BC, then AB = XY de B. Addition	monstrates what proper C. Substitution	rty? D. Symmetric

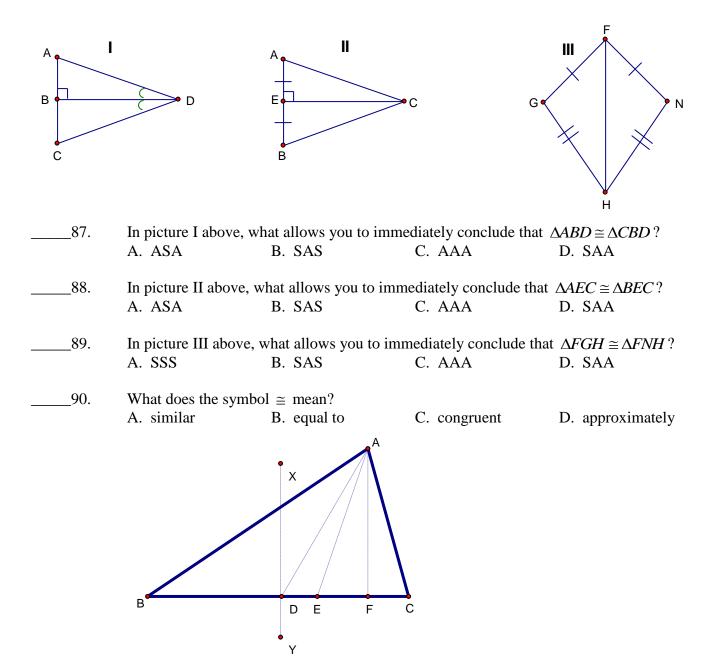
Consider this Venn diagram.




46.	According to the Ver	nn diagram, how many	are on the soccer tean	n?
	A. 11	B. 16	C. 4	D. 9
47.	According to the Ver A. 1	nn diagram, how many B. 8	are playing all 3 sport C. 18	ns at the same time? D. 20
48.	According to the Ver A. 9	nn diagram, how many B. 8	play football and bask C. 33	xetball at the same time? D. 14
49.		e plays either golf or to and golf, how many ki	1.0	8 play tennis.
	A. 17	B. 19	C. 22	D. 25
50.	I have a total of 14 k how many play both	ids. If 10 of my kids p tennis and soccer?	lay soccer and 12 play	tennis,
	A. 2	B. 4	C. 8	D. 10
51.		no play either soccer or ball. If the soccer tear eam?		
	A. 12	B. 16	C. 20	D. 26
52.		band and 16 in chorus. total kids are in either		in both chorus
	A. 26	B. 28	C. 30	D. 34



- ___53. In Figure 1 above, which is a valid conclusion?
 - A. No cat owners also own dogs.
 - B. No fish owners also own cats.
 - C. No dog owners also own fish.
 - D. No pet owner owns more than one pet.
- ____54. In Figure 2 above, which statement is true?
 - A. No bushes are flowering plants.
 - B. No roses are bushes.
 - C. Some flowering plants are bushes.
 - D. Some roses are not flowering plants.
- _____55. If lines are parallel, then alternate interior angles are equal. A. True B. False
- _____56. If lines are parallel, then corresponding angles add up to 180°. A. True B. False
- _____57. Vertical angles are equal. A. True B. False
- _____58. If lines are parallel, consecutive interior angles are equal. A. True B. False
- _____59. The sum of the angles in a triangle is 360°. A. True B. False

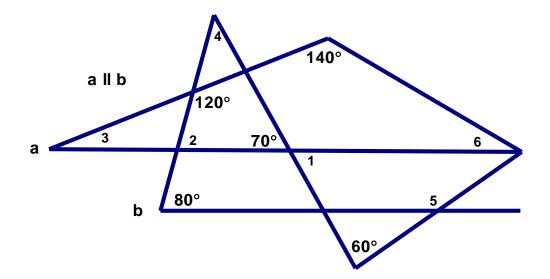

Look at the figure below and identify the given.

69.	Give the equation in slope intercept form that goes through (2, 4) and is parallel to the line $y = 5x - 3$.			
	A. $y = 5x + 3$	B. $y = -5x + 12$	C. $y = -\frac{1}{5}x + 12$	D. $y = 5x - 6$
70.	Give the equation in	slope intercept form th	nat goes through (3, 4)	and (5, 10).
	A. $y = 3x - 4$	B. $y = -3x + 13$	C. $y = 3x - 5$	D. $y = \frac{1}{3}x + 3$
71.	In $\triangle ABC$, $\angle A = 3n$, \angle	$\angle B = 5n - 30, \angle C = 2n - 30$	+10. What is the meas	surement of $\angle A$?
	A. 20°	B. 40°	C. 60°	D. 80°
72.	If $\triangle ABC$ is an isosce A. $\angle C = \angle B$	eles triangle with AB = B. $\angle A = \angle B$	= BC, which statement C. $\angle A = \angle C$	must be true? D. AC = BC
73.	In ΔCWH which ang	\overline{CH}		
73.	A. $\angle C$	B. $\angle P$	C. ∠ <i>H</i>	D. $\angle W$
74.	If in ΔCWH , CW =	WH and $WH = CH$, w	hat is the measuremen	t of $\angle W$?
	A. 40°	B. 60°	C. 80°	D. Not possible to know
75.	If $\triangle ABC \cong \triangle XYZ$, w	which of the following	must be true?	
	A. $\angle A = \angle Z$	B. $AC = XY$	C. $XZ = BC$	D. None of the above
76.		-	= BC and $\angle A = 40^\circ$, w	
	A. 40°	B. 70°	C. 80°	D. None of the above
77.			XY = 5x + 8, what is t	
	A. 30	B. 20	C. 6	D. 4
78.			$\angle S = 4x + 14$, what is	
	A. 10	B. 32	C. 46	D. 8
79.		ing does not prove con		
	A. ASA	B. SSA	C. SSS	D. All prove congruency
80.		$= \angle H$ what can you con		$D = \sqrt{C} - 100^{\circ}$
	A. $CW = WH$	B. $CH = CW$	C. $CH = WH$	D. $\angle C = 100^{\circ}$

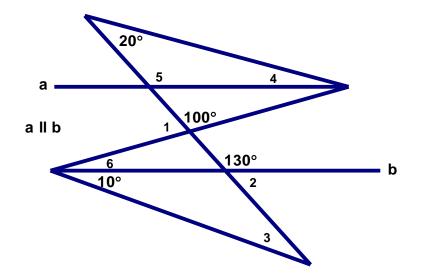
81.	In <u>figure 1</u> above, what <u>postulate</u> would be used to prove that $\triangle ABD \cong \triangle ACD$			
	if $AC \cong AB$ and CD	$P \cong BD?$		
	A. ASA	B. SAS	C. SSS	D. AAS
82.	•	\overline{E} and \overline{BD} bisect each d be used to prove that	-	
	A. ASA	B. SAS	C. SSS	D. AAS
83.	•	nat additional informat ent to ΔPNO by SAS	-	
	A. $PN = MN$	B. $PO = LM$	C. $PO = NM$	D. $NM = NO$
84.	-	X = BX and CX = DX. d be used to prove that		
	A. ASA	B. SAS	C. SSS	D. AAS
85.	In figure 5 above, wh triangles are congrue	nat postulate would be nt?	used to prove that the	
	A. ASA	B. SAS	C. SSS	D. AAS
86.	describe the triangles	nich statement below d s shown if $\triangle DEF \cong \triangle F$	FGH?	
	A. $\triangle EDF \cong \triangle GFH$		C. $\Delta EFD \cong \Delta GHF$	
	B. $\Delta FED \cong \Delta HGF$		D. $\Delta FDE \cong \Delta FHG$	

In the figure above, BD = CD, $\angle XDC = \angle AFC = 90^\circ$, and $\angle BAE = \angle CAE$.

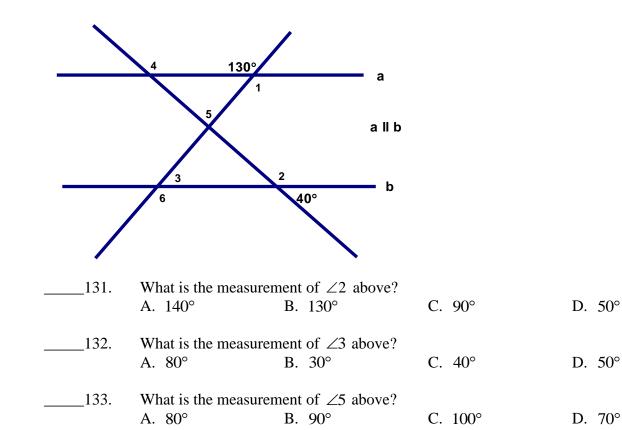
91.	What is \overline{AD} in the tri	iangle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
92.	What is \overline{AE} in the tri	angle above?		
)2.	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
93.	What is \overline{XD} in the tri	angle above?		
75.	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
94.	What is \overline{AF} in the tri	angle above?		
>	A. median	B. perpendicular bisector	C. altitude	D. angle bisector

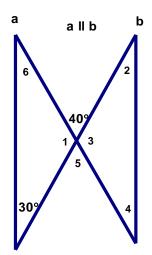

95.	Which of the measure A. 3, 4, 9	rements below could be B. 2, 8, 10	e the measurements of C. 3, 7, 9	a triangle? D. 6, 8, 16
96.	If two sides of a tria A. $2 \le m < 14$	ngle are 6 cm and 8 cm B. 2< <i>m</i> <14	a, what must be true at C. $2 > m > 14$	bout the third side? D. $2 \le m \le 14$
97.	In $\triangle ABC \ \angle A = 2x$, A. \overline{AB}	$\angle B = x + 60$, and $\angle C$ B. \overline{BC}	$= 2x + 20$. Which side C. \overline{AC}	e is the longest? D. $\angle A$
98.	In $\triangle ABC$, AB = 10 and XZ = 10 cm. W A. $\angle X > \angle A$			$XY = 8 \text{ cm}, YZ = 9 \text{ cm},$ $D. \angle Y > \angle B$
99.		B. $\angle A > \angle B$), B = (3, 7) and C = (6 B. $\angle B$		
100.		20, $\angle S = 5x$, and $\angle T$ y from longest to shorted		list of sides of ΔRST that
101.	A. $\overline{TR}, \overline{RS}, \overline{ST}$	B. $\overline{ST}, \overline{RS}, \overline{TR}$	C. $\overline{RS}, \overline{ST}, \overline{TR}$	D. $\overline{ST}, \overline{TR}, \overline{RS}$ list of sides of ΔRST that are
101.		2S = 2x + 40, and 2T om longest to shortest. B. $\overline{ST}, \overline{RS}, \overline{TR}$	C. $\overline{RS}, \overline{ST}, \overline{TR}$	D. $\overline{ST}, \overline{TR}, \overline{RS}$
102.		0, $\angle S = x + 5$, and $\angle T$ om longest to shortest.	x = 3x - 35. Choose th	e list of sides of ΔRST that are
	A. $\overline{RS}, \overline{ST}, \overline{TR}$	B. $\overline{ST}, \overline{RS}, \overline{TR}$	C. $\overline{TR}, \overline{RS}, \overline{ST}$	D. $\overline{ST}, \overline{TR}, \overline{RS}$
Figur	e A			Figure B
x+2 A • 5x	C 2x+1 +2 G x+10	B	• A x+6	H 10x x+2 B
103.	If \overline{CG} is a median of A. 2	of $\triangle ABC$ in figure A ab B. 4	ove, what is BC? C. 5	D. None of the above
104.	If \overline{BH} is an altitude A. 8	of $\triangle ABC$ in figure B B. 9	above, what is BC? C. 11	D. None of the above
105.	Two sides of a triang third side?	gle are 4 cm and 10 cm	. What is a possible n	neasurement of the
	A. 8 cm	B. 2 cm	C. 15 cm	D. 14 cm

106.	In $\triangle ABC$, $\angle A = 59^{\circ}$ A. \overline{AB}	$A \not \angle B = 60^\circ$, and $\angle C =$ B. \overline{AC}	61°. What side is lon, C. \overline{CB}	gest? D. $\angle C$
107.		cm, BC = 12 cm, and B. $\angle B$		
108.	Which below is a po A. 4, 4, 8	ssible measurement fo B. 7, 7, 13	r an isosceles triangle? C. 2, 2, 5	
109.	If $\triangle ABC \cong \triangle XYZ, \angle A$. 40°	$A = 40^{\circ}, \angle C = 80^{\circ}, \text{ wh}$ B. 70°	at is the measurement C. 80°	of $\angle X$? D. 60°
110.	what is the measurer	logram with $\angle A = 7x$ nent of $\angle C$? B. 40°	and $\angle B = 3x - 20$, C. 80°	D 1400
111.	A. 20°If ABCD is an isosceA. 50°	b. 40 eles trapezoid with $\angle A$ B. 100°		D. 140° D. 140°
112.		ing is not always true a ect each other		e equal in length
113.	Opposite angles are a A. rhombus	not always congruent i B. parallelogram	n a C. trapezoid	D. rectangle
114.	\overline{NO} is the base of iso what is the value of x A. 2	osceles trapezoid NRP(x? B. 3	D. If $\angle N = 4x + 10$ and C. 16.6	d $\angle O = 6x + 4$, D. 18.2
115.	If ABCD is an isosce A. $\angle A$	eles trapezoid with AB B. $\angle C$	$B = CD, \ \angle B$ is congrue C. $\angle D$	nt to D. $\angle X$
116.	Diagonals are alway A. parallelogram	s perpendicular in a B. trapezoid	C. rhombus	D. rectangle
	A	В		
D	E	c		

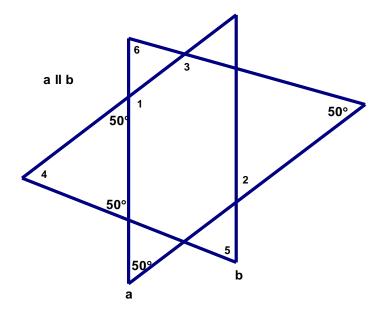

- 117. If AE = 4n 8, DE = 2n + 6, and CE = n + 4 in the parallelogram above, what is the value of n? A. -2 B. 2 C. 4 D. 7
- 118. If $\angle ADC = 80^{\circ}$ in the parallelogram above, what is $\angle DCB$? A. 40° B. 80° C. 100° D. 120°

119.	If in the parallelogram above $DC = 3n + 20$, $BC = n + 10$, and $AB = 4n - 10$, what is n?			
	A5	B. $6\frac{2}{3}$	C. 30	D. None of the above
120.	if three of the points	ing could be a fourth po are $(0, 0)$, $(6, 0)$ and (3)	3, 4)?	
	A. (9, 4)	B. (6, 4)	C. (4, 6)	D. (4,9)
121.	Which is the equatio	n that has a slope of 2	and goes through the p	ooint (1, 9).
	A. $y = 2x + 7$	B. $y = 2x - 9$	C. $y = 2x + 9$	D. $y = 2x - 1$
122.	Which equation belo	w is perpendicular to	$y = \frac{1}{2} x - 7?$	
	A. $y = 2x + 7$	B. $y = -2x - 1$	C. $y = \frac{1}{2}x + 7$	D. $y = x + 1$
123.	Let p and q be	<i>p</i> : $\angle A$ is acute	q: $\angle B$ is acute	
	What would represent " $\angle A$ is acute or $\angle B$ is acute"?			
	A. $p \wedge q$	B. $p \lor q$	C. $p \leftrightarrow q$	D. $p \rightarrow q$
124.	Assume the followin	ng: <i>p</i> : ∠A is acut	te $q: \angle B$ is acute	n: $\angle C$ is obtuse
_	Assume the following: $p: \angle A$ is acute $q: \angle B$ is acute $n: \angle C$ is obtuse What would represent "If $\angle C$ is obtuse, then $\angle A$ is acute and $\angle B$ is acute."?			

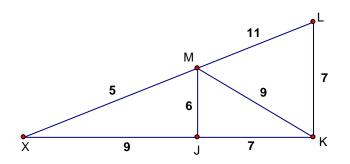

A.
$$n \rightarrow p \land q$$
 B. $n \rightarrow p \lor q$ C. $p \rightarrow n \land q$ D. $p \rightarrow n \lor q$



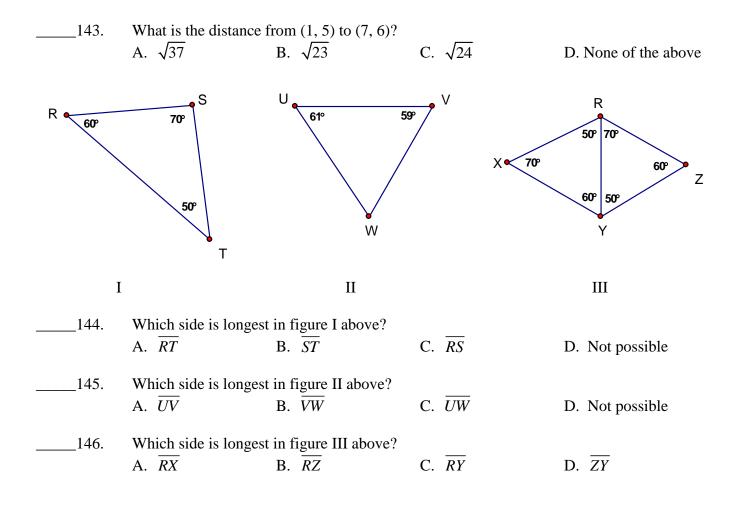
125.	What is the measure A. 20°	ment of ∠1 above? B. 30°	C. 70°	D. 80°
126.	What is the measure A. 20°	ment of ∠3 above? B. 30°	C. 70°	D. 80°
127.	What is the measure A. 20°	ment of $\angle 6$ above? B. 30°	C. 70°	D. 80°

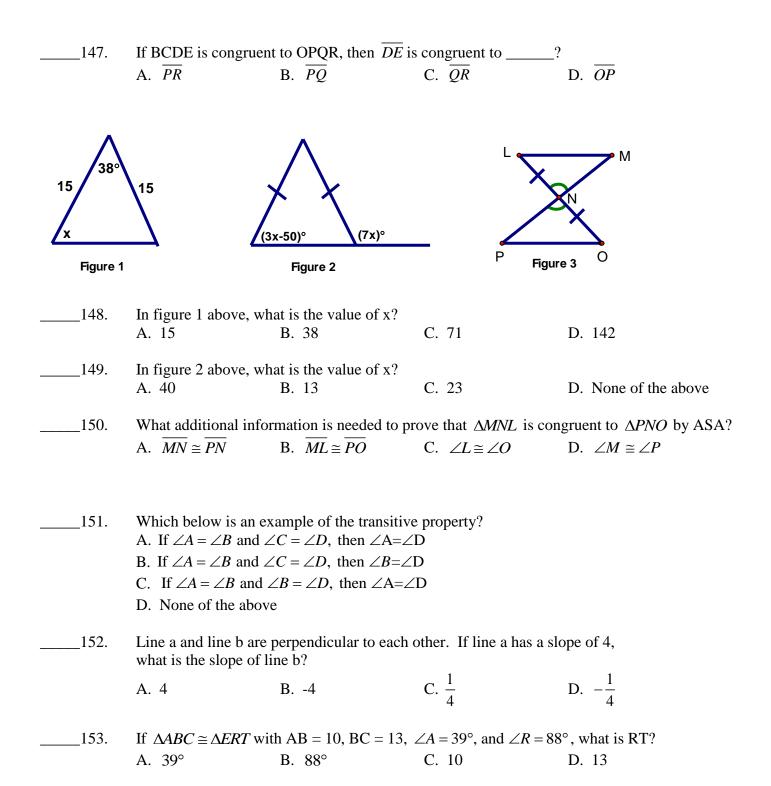


128.	What is the measure A. 80°	ement of ∠1 above? B. 30°	C. 40°	D. 50°
129.	What is the measure A. 80°	ement of ∠3 above? B. 30°	C. 40°	D. 80°
130.	What is the measure A. 80°	ement of $\angle 6$ above? B. 30°	C. 40°	D. 80°

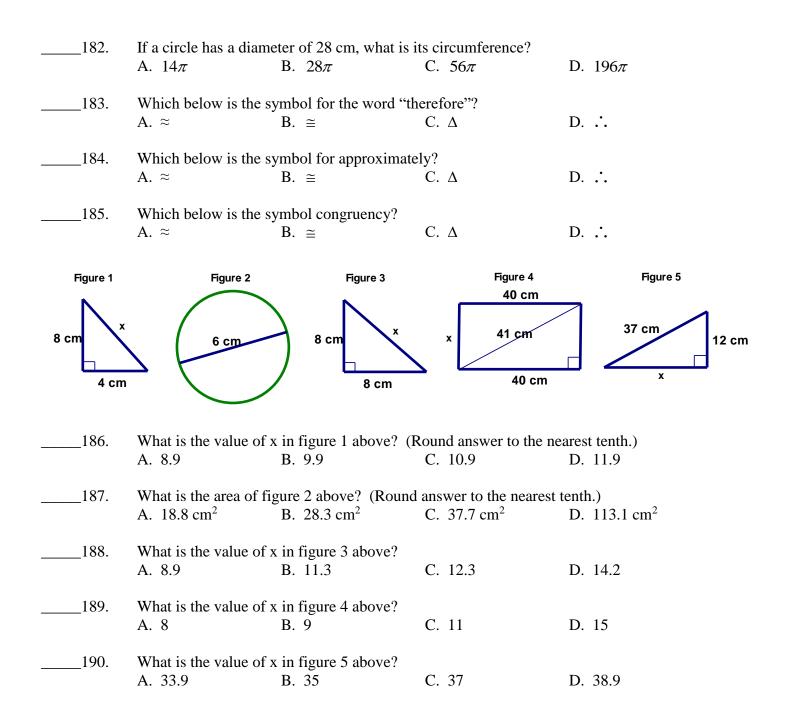


134.	What is the measurer A. 140°	ment of ∠1 above? B. 40°	C. 30°	D. 10°
135.	What is the measurer A. 140°	ment of ∠4 above? B. 40°	C. 30°	D. 10°
136.	What is the measurer A. 140°	ment of ∠6 above? B. 40°	C. 30°	D. 10°

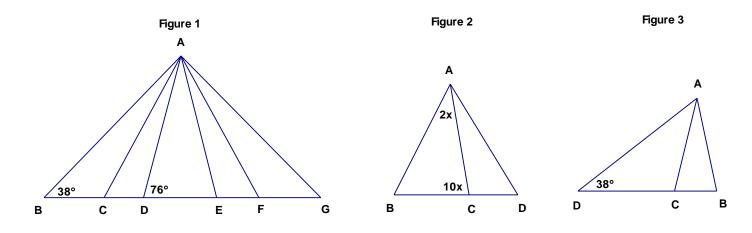



137.	What is the measure A. 80°	ment of ∠4 above? B. 130°	C. 40°	D. 50°
138.	What is the measure A. 80°	ment of ∠2 above? B. 130°	C. 40°	D. 50°
139.	What is the measure A. 80°	ment of ∠6 above? B. 130°	C. 40°	D. 50°

- $\begin{array}{c|cccc} \hline & 140. & \text{When comparing } \angle JMK \text{ and } \angle MJX \text{ above, what is true?} \\ & \text{A. } \angle JMK > \angle MJX & \text{B. } \angle JMK < \angle MJX \\ & \text{C. } \angle JMK = \angle MJX & \text{D. It cannot be determined} \end{array}$
- 141. In $\triangle ABC \ \angle A = 8x + 12$, $\angle B = 15x 40$, and $\angle C = 10x + 10$. Determine the longest side of $\triangle ABC$. A. \overline{AB} B. \overline{AC} C. \overline{CB} D. $\angle A$

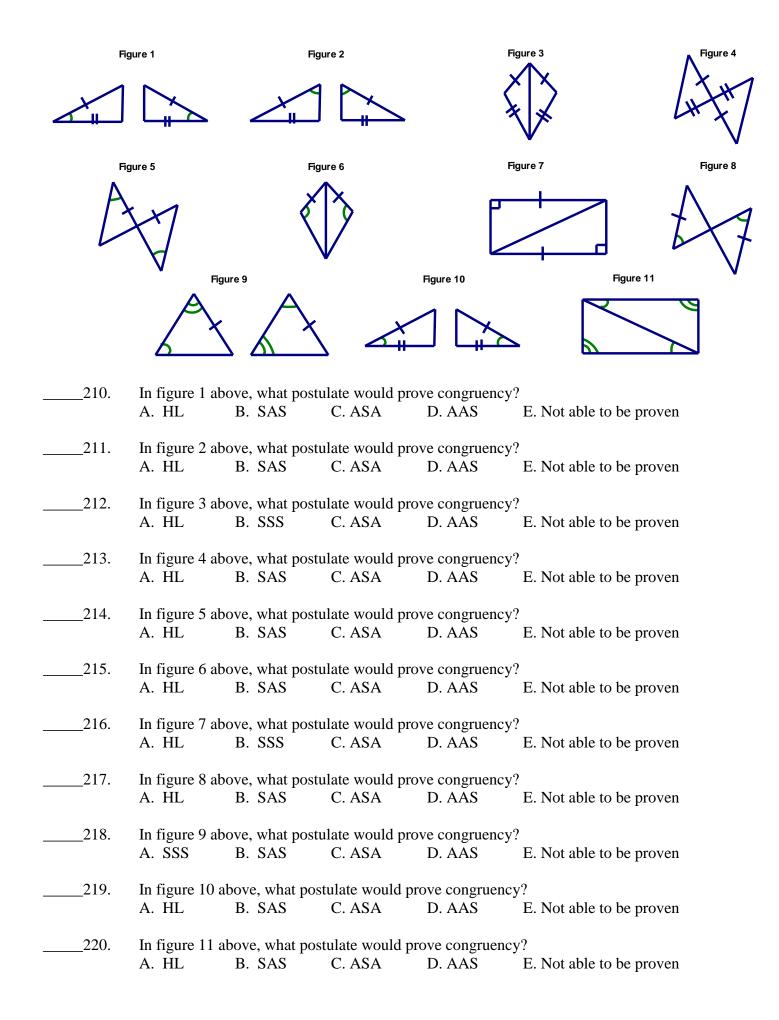

142. What equation would be perpendicular to
$$y = 2x + 5$$

A. $y = -x - 5$ B. $y = -2x - 5$ C. $y = -\frac{1}{2}x - 5$ D. $y = \frac{1}{2}x - 5$



Figu	re 1	Figure 2		Figure 3
2n + 20 4n - 40	140	4n + 5	6n 4n	5n + 50
<u>2n</u>	<u>2n + 20</u>	4n - 5	4n + 50 4n	6n + 30 6n + 10
154.	What is the value of A. 16	n in figure 1 above. B. 20	C. 25	D. 50
155.	What is the value of A. 16	n in figure 2 above. B. 20	C. 25	D. 50
156.	What is the value of A. 16	n in figure 3 above. B. 20	C. 25	D. 50
157.	Which equation belo A. $y = 2x - 4$	w would be perpendic B. $y = -2x + 7$	cular to $y = \frac{1}{2}x - 4?$ C. $y = \frac{1}{2}x + 4$	D. $y = 8x + 4$
158.			s of the side of a square of the square equal the C. 4	e. perimeter of the square? D. 10
159.		below for $\angle A$ and $\angle B$ possibly consecutive B . 45°	would make the angles interior angles? C. 90°	s vertical angles D. 145°
160.			ofessor when he was a C. Eminem	
161.	Which of the followi congruent but do not A. rhombus	• •	d have diagonals that a C. trapezoid	re D. parallelogram
162.		wing do the diagonals B. rectangle		D. parallelogram
163.	If ABCD is a paralle A. 3	logram with $\angle A = x$ a B. 31	and $\angle D = 2x - 3$, what C. 61	is the value of x? D. 121
164.	Opposite angles are a A. trapezoid	always congruent in a(B. quadrilateral	n) C. parallelogram	D. isosceles trapezoid
165.	Not all rectangles ha A. diagonals that bis B. diagonals that are	sect each other	C. four congruent si D. consecutive angl	des es that are supplementary.

166.	Which of the following is NOT true of p A. The opposite sides are congruent	earallelograms? C. Consecutive angles are complementary	
	B. The opposite angles are congruent	D. The diagonals bisect each other	
167.	What is D in parallelogram ABCD if A = A. (2, 4) B. (9, -3)	= $(0, 0)$, B = $(7, 0)$, and C = $(9, 4)$? C. $(16, 4)$ D. $(9, 11)$	
168.	What is D in parallelogram ABCD if A A. (13, 19) B. (28, 4)	= (0, 0), B = (15, 0), and C = (13, 4)? C. (-2, 4) D. (13, -11)	
169.	If ABCD is a parallelogram with $\angle A = 7$ what is the measurement of $\angle C$?		
	A. 10° B. 40°	C. 70° D. 140°	
170.	If ABCD is an isosceles trapezoid with $A. 32^{\circ}$ B. 64°	$\angle A = 32^{\circ}$, what is $\angle C$? C. 146° D. 148°	
	n. 52 D. 01	C. 110 D. 110	
171.	Which of the following is NOT always t		
	A. the diagonals bisect each otherB. opposite angles are equal	C. opposite sides are equal in lengthD. diagonals are perpendicular	
172.	Opposite angles are NOT always congru A. rhombus B. parallelogram		
173.	Diagonals are always perpendicular in a		
	A. parallelogram B. trapezoid	C. rhombus D. rectangle	
174.	If two sides of a triangle have the measu A. $4 < m > 10$ B. $4 \le m \le 10$	rements of 3 and 7, what could the third leg be? C. $4 < m < 10$ D. None of the above	
	A. $4 < m > 10$ B. $4 \le m \le 10$	C. $4 < m < 10$ D. None of the above	
175.	If two sides of a triangle have the measu A. $1 < m < 15$ B. $1 \le m \le 15$	rements of 8 and 7, what could the third leg be? C. 7< m < 8 D. None of the above	
176.	If two sides of a triangle have the measu	rements of 9 and 9, what could the third leg be?	
1/01	A. $1 < m < 18$ B. $0 < m \le 18$	C. $0 < m < 9$ D. None of the above	
177.	If two sides of a triangle have the measu	rements of 1 and 1, what could the third leg be?	
	A. $1 < m < 1$ B. $0 > m < 2$	C. $0 < m < 2$ D. None of the above	
178.	In $\triangle ABC$ A = (3, 4), B = (2, -1), and C =	= (9, 2). Which angle is largest?	
170.	A. $\angle A$ B. $\angle B$	C. $\angle C$ D. It can't be determined	ed.
179.	In $\triangle ABC$ A = (4, 1), B = (6, 8), and C =	(7, 3) Which angle is largest?	
177.	A. $\angle A$ B. $\angle B$	C. $\angle C$ D. It can't be determined	ed.
100)\Q	
180.	What is the distance from (9, 8) to (7, 10 A. $\sqrt{5}$ B. $\sqrt{8}$	C. $\sqrt{10}$ D. $\sqrt{12}$	
	A. Y.J. D. YO	C. VIO D. VIZ	
181.	If a circle has a diameter of 28 cm, what		
	A. 14π B. 28π	C. 56π D. 196π	



191.	In figure 1 above, $\triangle ABG$ and $\triangle DAE$ are isosceles triangles and $\triangle CAF$ is an equilateral triangle. Find the measurement of $\angle EAF$.			
	A. 14°	B. 16°	C. 18°	D. 40°
192.	In figure 2 above, wh A. 16°	hat is the measurement B. 24°	t of $\angle CAD$ if $\triangle ABD$ is C. 40°	s an equilateral triangle? D. 46°
193.	In figure 3 above, Al A. 15°	B = AC = DC. What is B. 28°	s the measurement of . C. 34°	∠ <i>CAB</i> ? D. 38°
194.	If the area of a circle A. 56.5 cm	is 1017.88 cm ² , what B. 100.5 cm	is the circle's circumfe C. 113.1 cm	erence? D. 131.9 cm
195.	How many sides doe A. 9	s a dodecagon have? B. 10	C. 12	D. 15
196.	Let A = (7, 8), B = (A. 10.5	9, 13), and C = (14, 14 B. 12.4	 How far is it to go f C. 14.3 	rom A to C and then to B? D. 15.6
197.	B is between A and What is the numerica	C. $AB = 2n$, $BC = n + al$ length of AB ?	11, and AC = 44.	
	A. 18	B. 22	C. 24	D. 26
198.	Rounding to the near a triangle with the fo A. 17	rest whole number, wh llowing vertices: B. 18	at is the perimeter of (2, 2) (4, 6) (3, 10 C. 20)) D. 22
199.			the midpoint of \overline{BC} , an = (10, 15) C = (18, 17) C. 12	
200.		a hypotenuse of 13 cm r of the right triangle? B. 22	and its area is 30 cm. C. 24	D. 30

201.	All of the points in this problem are collinear.				
	B is the midpoint of \overline{AC} . X is the midpoint of \overline{AB} . Y is the midpoint of \overline{BC} . D is the midpoint of \overline{XB} .				
	F is the midpoint of	\overline{DB} . If DF = 2cm, wh	at is AC?		
	A. 24	B. 28	C. 30	D. 32	
202.	Assume the statement	nt $p \rightarrow r$.			
	What is the converse	e of the inverse of the c	contrapositive of this st	atement?	
	A. $p \rightarrow r$	B. $p \rightarrow \sim r$	C. $\sim p \rightarrow r$	D. $r \rightarrow p$	
203.	In a class of 28 students, 20 students are studying French, 12 students are studying Spanish and 8 are studying both French and Spanish. How many students in this class are studying neither French nor Spanish?				
	A. 4	B. 6	C. 8	D. 10	
204.	-	the line that goes thro through the points (1, 4		l is perpendicular	
	A. $y = -6x + 12$	B. $y = -6x + 15$	C. $y = 6x + 12$	D. $y = 6x + 15$	
205.	U	celes triangle with A lo 6, what is BC? (Round B. 7.2	-		
	A. 0.J	D . 1.4	\sim 1.0	\mathbf{D} . 0.3	

206.	In figure 1 above, what postulate would prove congruency?				cy?
	A. HL	B. SAS	C. ASA	D. SSS	E. Not able to be proven
207.	In figure 2 at	pove, what pos	stulate would p	rove congruend	cy?
	A. SSS	B. SAS	C. ASA	D. AAS	E. Not able to be proven
208.	In figure 3 at	pove, what pos	stulate would p	rove congruen	cy?
	A. HL	B. SAS	C. ASA	D. AAS	E. Not able to be proven
209.	In figure 4 at	pove, what pos	stulate would p	rove congruend	cy?
	A. HL	B. SAS	C. ASA	D. SSS	E. Not able to be proven

