1. Which expression is equivalent to $\sqrt{20x^{16}y^{25}}$ for positive x and y values?

- \bigcirc **A** $2x^4y^5\sqrt{5}$ \bigcirc **C** $2x^8y^{12}\sqrt{5y}$
- \bigcirc **B** $5x^4y^5\sqrt{2}$ \bigcirc **D** $5x^8y^{12}\sqrt{2y}$

Which expression is equivalent to ³√6w⁷ · ³√4w⁵ ?

- \bigcirc A 2w⁴ $\sqrt[3]{3}$ \bigcirc C 2w¹¹ $\sqrt[3]{3w^2}$
- **B** $2w^4\sqrt[3]{6}$ **D** $2w^{11}\sqrt[3]{6w^2}$

No longer on SOL (properties) 3.

Which expression is equivalent to the following expression if no denominators equal zero? 4.

- $\bigcirc A \frac{-w^4}{6} \qquad \bigcirc B \frac{-6}{w^3} \qquad \bigcirc C \frac{w^3}{6} \qquad \bigcirc D \frac{6}{w^4}$

5. What is the complete factorization of $(18x^4 + 12x^3 - 6x)$?

- \bigcirc A $6x^3(3x+2)$ \bigcirc C 6x(3x-1)(x+1)
- \bigcirc **B** $6x(3x^3+2x^2)$ \bigcirc **D** $6x(3x^3+2x^2-1)$

6. Which of these is equivalent to i^{75} ?

- A i C 1
- B −i
 D −1

7. For which value of b is $x^2 + bx - 60$ factorable over the set of integers?

- O A 61 O C -7
- B 23 D -16

- 8. If no denominator equals zero, which expression is equivalent to $\frac{25-4x^2}{6x^2+9x-15} \cdot \frac{6x^2-2x-4}{2x^2-x-10}$?
- \bigcirc A -2 \bigcirc B 2 \bigcirc C $\frac{-2(3x+2)}{3(x+2)}$ \bigcirc D $\frac{2(3x+2)}{3(x+2)}$
- 9. Assuming the denominators do NOT equal zero, which expression is equivalent to $\frac{12}{r+1} + \frac{1}{r-4}$?
 - \bigcirc A $\frac{13x-47}{(x+1)(x-4)}$ \bigcirc C $\frac{13x-47}{2x-3}$
 - \bigcirc B $\frac{13}{(x+1)(x-4)}$
- \bigcirc **D** $\frac{13}{2x-3}$
- 10. Which expression is equivalent to $\sqrt{36x^9y^{25}}$, where x > 0 and y > 0?
 - \bigcirc A $6x^3y^5$

 \bigcirc C $18x^3v^5$

 \bigcirc **B** $6x^{\frac{9}{2}}y^{\frac{25}{2}}$

- \bigcirc **D** $18x^{\frac{9}{2}}y^{\frac{25}{2}}$
- 11. What nonzero value of x is a solution to the following equation?
 - \bigcirc A $x = \frac{27}{14}$

 $\frac{x+2}{r} + \frac{x-6}{3r} = \frac{2x+9}{5r}$

- \bigcirc **B** $x = \frac{17}{14}$
- \bigcirc **c** $x = \frac{13}{14}$
- \bigcirc **D** $x = \frac{5}{14}$
- 12. How many values of x will satisfy the equation -2|3x-5|=0?
 - 0 A 0
 - O B 1
 - O C 2
 - O D 3

13. Which graph best represents the solutions for y < |x+4|-1?

14. What is a solution of $\sqrt{7-2x}+5=8$?

$$\bigcirc$$
 A $x = -26$

$$\bigcirc$$
 B $x = \frac{-19}{2}$

○ **A**
$$x = -26$$
 ○ **B** $x = -\frac{19}{2}$ ○ **C** $x = -\frac{13}{2}$ ○ **D** $x = -1$

$$\bigcirc$$
 D $x = -1$

15. Which is the apparent solution set of the system of equations graphed on the following grid?

$$\bigcirc$$
 A $\{(0,-5),(0,5)\}$

$$\bigcirc$$
 D $\left\{ (-5,0), \left(-3\frac{1}{3},0\right), (-1,0) \right\}$

16. This graph best represents the solution to which inequality?

- \bigcirc A |x-11| > 4 \bigcirc C |2x+7| > 15
- \bigcirc B $|x-11| < 4 <math>\bigcirc$ D |2x+7| < 15
- 17. Directions: Type your answer in the box.

What value of x makes $\sqrt[3]{2x-5} = 3$ true?

- 18. What are the apparent roots of the equation graphed on the coordinate grid?
 - O A {0,3}
 - $OB\left\{ \frac{-1}{2}, 4 \right\}$
 - \bigcirc c $\left\{ -\frac{3}{2}, \frac{1}{2} \right\}$
 - D {-2,1}

19. If no denominator is equal to zero, what is the solution set for the following equation?

$$\frac{3x-4}{x^2}=\frac{3}{2x}$$

- $\bigcirc A \left\{ \frac{8}{3} \right\} \qquad \bigcirc C \left\{ \frac{-2}{3}, 2 \right\}$
- \bigcirc B $\left\{\frac{8}{9}\right\}$ \bigcirc D $\left\{\frac{-2}{3}, \frac{2}{3}\right\}$

$$\begin{cases} y = 4x + 2 \\ y = x^2 + x - 8 \end{cases}$$

$$\bigcirc$$
 A $\{(-5, -18), (2, 10)\}$ \bigcirc C $\{(-6, -22), (1, 6)\}$

21. Directions: Click on all correct answers.

Identify all the points where the graph of $h(x) = (x+1)(x^2+8x+16)$ intersects the x-axis.

(-4,0)	(1, 0)
(-2,0)	(4, 0)
(-1,0)	(16, 0)

22. The function $f(x) = (1-x)^2 - 4$ is decreasing throughout the interval —

$$\bigcirc$$
 B $\neg \infty < x < 1$

$$0 \text{ c} -1 < x < 3$$

$$\bigcirc$$
 D $\neg \infty < x < \infty$

23. Given:
$$f(x) = 4x^4 - 15$$
 and $g(x) = 2x + 11$

What is the value of g(f(x))?

$$\bigcirc$$
 A $8x^5 + 44x^4 - 30x - 165 \bigcirc C $8x^4 - 4$$

$$\bigcirc$$
 C $8x^4 - 4$

$$\bigcirc$$
 D $8x^4 - 19$

24. A normally distributed data set has a mean of 0 and a standard deviation of 0.5. Which is closest to the percent of values between -1 and 1?

O A 34%

O C 68%

O B 50%

O D 95%

25. Directions: Click on the grid to plot the correct point.

Point A lies on the graph of $f(x) = \frac{1}{2}x + 2$. Locate the image of Point A that lies on the graph

of $f^{-1}(x)$.

26. Which equation best represents this graph?

$$\bigcirc$$
 A $f(x) = 3 \left(\frac{1}{5}\right)^x$

○ **B**
$$f(x) = 3\sqrt{5x}$$

$$\bigcirc$$
 c $f(x) = \frac{1}{3}\log(5x)$

$$\bigcirc$$
 D $f(x) = \frac{1}{3}(5)^x$

- 27. If $f(x) = x^2 + 3x$ and $g(x) = 2x^2$, what is g(f(-1))?
 - O A -4
 - O B 0
 - O C 8
 - O D 10

- 28. The volume of a cone (V) varies jointly with its height (h) and the square of its radius (r). If k is the constant of proportionality, which of the following equations represents the correct relationship between volume, radius, and height?

 - $\bigcirc A \quad V = k(rh)^2 \qquad \bigcirc C \quad V = \frac{k}{r^2h}$
 - \bigcirc **B** $V = \frac{kr^2}{h}$ \bigcirc **D** $V = kr^2h$
- 29. What is the equation of the horizontal asymptote of the graph of the following equation?

$$f(x) = 4^{(x+1)} - 10$$

- \bigcirc **A** y = 4
- \bigcirc C y = -1
- \bigcirc **B** y = 0 \bigcirc **D** y = -10
- 30. As x approaches negative infinity, which of the following describes the end behavior of $f(x) = -x^7 + bx^3 + c$?

 - \bigcirc **A** f(x) approaches c \bigcirc **C** f(x) approaches positive infinity

 - \bigcirc **B** f(x) approaches 0 \bigcirc **D** f(x) approaches negative infinity
- Jessica paid \$23,000 for her car and kept a record of its value.

Assuming the relationship is exponential, which equation best models the curve of best fit for the data?

- \bigcirc **A** $y = 21,000(1.20)^{x}$
- \bigcirc **B** $y = 22,300(2.60)^x$
- \bigcirc **C** $y = 23,100(0.85)^{x}$
- \bigcirc **D** $y = 23,500(0.70)^{x}$

Number of Years (x)	Value (in dollars) (y)
0	23,000
1	20,000
2	16,000
3	14,000
4	12,000
5	10,000

- 32. What is the sum of the infinite geometric series $9-6+4-\frac{8}{3}+\ldots$?

- \bigcirc A $\frac{29}{3}$ \bigcirc B $\frac{25}{3}$ \bigcirc C $\frac{27}{5}$ \bigcirc D $\frac{18}{5}$

- 33. Which number is a zero of $f(x) = 7x^2 + 16x 48$?
 - O A 12
 - OB 4
 - \circ c $\frac{12}{7}$
 - \bigcirc **D** $\frac{4}{7}$

- 34. Which function is the inverse of $g(x) = x^3 + 11$?
 - \bigcirc **A** $g^{-1}(x) = \sqrt[3]{x-11}$
 - \bigcirc **B** $g^{-1}(x) = \sqrt[3]{x+11}$
 - \bigcirc **C** $g^{-1}(x) = x \sqrt[3]{11}$
 - \bigcirc **D** $g^{-1}(x) = x + \sqrt[3]{11}$

- 35. What is the domain of $g(x) = \log(x 1)$?
 - \bigcirc A $\{x | x > 10\}$
 - \bigcirc **B** $\{x | x > 9\}$
 - \bigcirc **c** $\{x | x > 1\}$
 - $\bigcirc \mathbf{D} \left\{ x \mid x > 0 \right\}$

36. A scientist obtained a sample that contained 80 grams of radioactive Barium-122 that decays exponentially over time. The amount of Barium-122 that remained in the sample at observed times is shown in the table.

Radioactive Decay of Barium-122

Time (minutes)	Mass of Remaining Barium-122 (grams)
0	80.0
1	56.6
2	40.0
3	28.3
4	20.0

If the radioactive decay continues at the same rate, which is closest to the amount of the sample of Barium-122 remaining at 5 minutes?

- A 8.3 grams
- B 10.0 grams
- C 11.7 grams
- D 14.1 grams
- 37. What is the sum of the first 20 terms of the arithmetic sequence shown?

$$\frac{1}{3}$$
, $\frac{2}{3}$, 1, $\frac{4}{3}$, $\frac{5}{3}$, ...

- O A 5
- O B 20
- C 70
- O D 140